4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three-dimensional topographic relief of the oceanic crust may control the occurrence of shallow very-low-frequency earthquakes in the Nankai Trough off Kumano

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To explore a local relationship between geological structures and the occurrence of very-low-frequency earthquakes (VLFEs), a particular class of slow earthquakes with characteristic periods of 10–100 s, we investigated three-dimensional (3D) structural features using reprocessed 3D seismic data from the Nankai Trough off Kumano, southwestern Japan. In this region, VLFEs have been observed along the subducting Philippine Sea Plate. Although the detailed source distribution of VLFEs was estimated by means of recent land-based and offshore seismic networks, the relation with geological features is not well understood. First, we reprocessed the 3D seismic data with advanced techniques and reinterpreted the fault distribution in the sediment layer of the accretionary prism and tracked two key horizons: a décollement and the oceanic crust surface. In the accretionary prism sediments, multiple continuous reflectors of basal detachments in the underthrust sequence and conjugate faults cutting the shallow imbricated thrust sequence were identified. In contrast to the gentle variation in the décollement surface, the topographic relief of the oceanic crust was prominent, with ridges and surface displacement due to faults in the oceanic crust. Then, we compared the structural features with the VLFE source locations. Most VLFEs were located deep in the underthrust sediments where the sediments may consist of underconsolidated muds. Furthermore, a high spatial correlation was observed between the VLFE distribution and the oceanic crust topographic relief. The maximum stress direction, which was inferred from the conjugate faults in the imbricated thrust zone, was consistent with the spatial relation between the VLFE localization and the oceanic crust central ridge. Oceanic crust ridges may cause strain accumulation in the underthrust sediments on the landward sides of the ridges, and low-angle slow thrust movements might be caused using weak slip planes in the underthrust muddy sediments. That is, the topographic relief of the oceanic crust may control the occurrence of shallow VLFEs in the Nankai Trough.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Source mechanisms and tectonic significance of historical earthquakes along the nankai trough, Japan

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-Dimensional Splay Fault Geometry and Implications for Tsunami Generation

              Megasplay faults, very long thrust faults that rise from the subduction plate boundary megathrust and intersect the sea floor at the landward edge of the accretionary prism, are thought to play a role in tsunami genesis. We imaged a megasplay thrust system along the Nankai Trough in three dimensions, which allowed us to map the splay fault geometry and its lateral continuity. The megasplay is continuous from the main plate interface fault upwards to the sea floor, where it cuts older thrust slices of the frontal accretionary prism. The thrust geometry and evidence of large-scale slumping of surficial sediments show that the fault is active and that the activity has evolved toward the landward direction with time, contrary to the usual seaward progression of accretionary thrusts. The megasplay fault has progressively steepened, substantially increasing the potential for vertical uplift of the sea floor with slip. We conclude that slip on the megasplay fault most likely contributed to generating devastating historic tsunamis, such as the 1944 moment magnitude 8.1 Tonankai event, and it is this geometry that makes this margin and others like it particularly prone to tsunami genesis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Earth, Planets and Space
                Earth Planets Space
                Springer Science and Business Media LLC
                1880-5981
                December 2020
                May 27 2020
                December 2020
                : 72
                : 1
                Article
                10.1186/s40623-020-01204-3
                ed13cbe2-f46f-4886-ac77-f3838b881a95
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article