Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Penetration of chlorhexidine into human skin.

      Antimicrobial Agents and Chemotherapy
      Administration, Topical, Anti-Infective Agents, Local, administration & dosage, pharmacokinetics, Catheterization, Central Venous, methods, Chlorhexidine, Female, Humans, In Vitro Techniques, Models, Biological, Permeability, Skin, drug effects, metabolism, microbiology, Solutions

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 microm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 +/- 0.047 and 0.077 +/- 0.015 microg/mg tissue within the top 100 microm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 microg/mg tissue below 300 microm). After 24 h of exposure, there was more chlorhexidine within the upper 100-microm sections (7.88 +/- 1.37 microg/mg tissue); however, the levels remained low (less than 1 microg/mg tissue) at depths below 300 microm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.

          Related collections

          Author and article information

          Comments

          Comment on this article