11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Intercellular Transfer of Microvesicles from Young Mesenchymal Stromal Cells Rejuvenates Aged Murine Hematopoietic Stem Cells : Microvesicles from Young MSCs Rejuvenate Aged HSCs

      , , , , ,
      STEM CELLS
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Donor age is one of the major concerns in bone marrow transplantation, as the aged hematopoietic stem cells (HSCs) fail to engraft efficiently. Here, using murine system, we show that a brief interaction of aged HSCs with young mesenchymal stromal cells (MSCs) rejuvenates them and restores their functionality via inter-cellular transfer of microvesicles (MVs) containing autophagy-related mRNAs. Importantly, we show that MSCs gain activated AKT signaling as a function of aging. Activated AKT reduces the levels of autophagy-related mRNAs in their MVs, and partitions miR-17 and miR-34a into their exosomes, which upon transfer into HSCs downregulate their autophagy-inducing mRNAs. Our data identify previously unknown mechanisms operative in the niche-mediated aging of HSCs. Inhibition of AKT in aged MSCs increases the levels of autophagy-related mRNAs in their MVs and reduces the levels of miR-17 and miR-34a in their exosomes. Interestingly, transplantation experiments showed that the rejuvenating power of these "rescued" MVs is even better than that of the young MVs. We demonstrate that such ex vivo rejuvenation of aged HSCs could expand donor cohort and improve transplantation efficacy. Stem Cells 2018;36:420-433.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy maintains the metabolism and function of young and old (hematopoietic) stem cells

          With age, hematopoietic stem cells (HSCs) lose their ability to regenerate the blood system, and promote disease development. Autophagy is associated with health and longevity, and is critical for protecting HSCs from metabolic stress. Here, we show that loss of autophagy in HSCs causes accumulation of mitochondria and an activated metabolic state, which drives accelerated myeloid differentiation mainly through epigenetic deregulations, and impairs HSC self-renewal activity and regenerative potential. Strikingly, the majority of HSCs in aged mice share these altered metabolic and functional features. However, ~ 1/3 of aged HSCs exhibit high autophagy levels and maintain a low metabolic state with robust long-term regeneration potential similar to healthy young HSCs. Our results demonstrate that autophagy actively suppresses HSC metabolism by clearing active, healthy mitochondria to maintain quiescence and stemness, and becomes increasingly necessary with age to preserve the regenerative capacity of old HSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age.

            In the human hematopoietic system, aging is associated with decreased bone marrow cellularity, decreased adaptive immune system function, and increased incidence of anemia and other hematological disorders and malignancies. Recent studies in mice suggest that changes within the hematopoietic stem cell (HSC) population during aging contribute significantly to the manifestation of these age-associated hematopoietic pathologies. Though the mouse HSC population has been shown to change both quantitatively and functionally with age, changes in the human HSC and progenitor cell populations during aging have been incompletely characterized. To elucidate the properties of an aged human hematopoietic system that may predispose to age-associated hematopoietic dysfunction, we evaluated immunophenotypic HSC and other hematopoietic progenitor populations from healthy, hematologically normal young and elderly human bone marrow samples. We found that aged immunophenotypic human HSC increase in frequency, are less quiescent, and exhibit myeloid-biased differentiation potential compared with young HSC. Gene expression profiling revealed that aged immunophenotypic human HSC transcriptionally up-regulate genes associated with cell cycle, myeloid lineage specification, and myeloid malignancies. These age-associated alterations in the frequency, developmental potential, and gene expression profile of human HSC are similar to those changes observed in mouse HSC, suggesting that hematopoietic aging is an evolutionarily conserved process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells.

              Haematopoietic stem cells (HSCs) self-renew for life, thereby making them one of the few blood cells that truly age. Paradoxically, although HSCs numerically expand with age, their functional activity declines over time, resulting in degraded blood production and impaired engraftment following transplantation. While many drivers of HSC ageing have been proposed, the reason why HSC function degrades with age remains unknown. Here we show that cycling old HSCs in mice have heightened levels of replication stress associated with cell cycle defects and chromosome gaps or breaks, which are due to decreased expression of mini-chromosome maintenance (MCM) helicase components and altered dynamics of DNA replication forks. Nonetheless, old HSCs survive replication unless confronted with a strong replication challenge, such as transplantation. Moreover, once old HSCs re-establish quiescence, residual replication stress on ribosomal DNA (rDNA) genes leads to the formation of nucleolar-associated γH2AX signals, which persist owing to ineffective H2AX dephosphorylation by mislocalized PP4c phosphatase rather than ongoing DNA damage. Persistent nucleolar γH2AX also acts as a histone modification marking the transcriptional silencing of rDNA genes and decreased ribosome biogenesis in quiescent old HSCs. Our results identify replication stress as a potent driver of functional decline in old HSCs, and highlight the MCM DNA helicase as a potential molecular target for rejuvenation therapies.
                Bookmark

                Author and article information

                Journal
                STEM CELLS
                Stem Cells
                Wiley-Blackwell
                10665099
                March 2018
                March 22 2018
                : 36
                : 3
                : 420-433
                Article
                10.1002/stem.2756
                29230885
                ed96c3c7-8a6a-4360-9665-822945a0c9d8
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article