1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Anti-Inflammatory Effect of Different Doses of Aliskiren in Rat Models of Inflammation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The present study was designed to evaluate the anti-inflammatory effects of different doses of aliskiren in two animal models of inflammation.

          Methodology

          Sixty-six Wistar rats were allocated into five groups: the first group (six rats) was treated with the vehicle only, without induction of paw edema and granulomatous inflammation, and served as a negative control; the second group (12 rats) was allocated into two subgroups and treated with the vehicle only, with induction of paw edema and granulomatous inflammation, and served as a positive control; the third group (36 rats) was allocated into six subgroups and treated with different doses of aliskiren (15, 30, and 60 mg/kg) in both models; the fourth group (12 rats) was treated with dexamethasone (1 mg/kg) in both models of inflammation. Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and high sensitivity C-reactive protein (hs-CRP) were measured. Skin samples were also sent for histopathological examination.

          Results

          Aliskiren, in a dose-dependent pattern, significantly decreased inflammation in rat models of inflammation, by attenuating the percentage of exudate, granuloma, and paw edema. Furthermore, it significantly reduced serum concentrations of TNF-α, VCAM-1, and hs-CRP and restored the serum concentration of IL-10. Additionally, significant improvement was seen in the histopathological findings.

          Conclusion

          In the current study, aliskiren was successful in decreasing inflammation in both models. These findings suggest that aliskiren is a good candidate for the treatment of inflammatory diseases.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Biology of interleukin-10.

          Interleukin (IL)-10 is the most important cytokine with anti-inflammatory properties besides TGF-β and IL-35. It is produced by activated immune cells, in particular monocytes/macrophages and T cell subsets including Tr1, Treg, and Th1 cells. IL-10 acts through a transmembrane receptor complex, which is composed of IL-10R1 and IL-10R2, and regulates the functions of many different immune cells. In monocytes/macrophages, IL-10 diminishes the production of inflammatory mediators and inhibits antigen presentation, although it enhances their uptake of antigens. Additionally, IL-10 plays an important role in the biology of B cells and T cells. The special physiological relevance of this cytokine lies in the prevention and limitation of over-whelming specific and unspecific immune reactions and, in consequence, of tissue damage. At the same time, IL-10 strengthens the "scavenger"-function and contributes to induced tolerance. This review provides an overview about the cellular sources, molecular mechanisms, effects, and biological role of IL-10. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

            The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term side effects of glucocorticoids.

              Glucocorticoids represent the standard therapy for reducing inflammation and immune activation in various diseases. However, as with any potent medication, they are not without side effects. Glucocorticoid-associated side effects may involve most major organ systems. Musculoskeletal, gastrointestinal, cardiovascular, endocrine, neuropsychiatric, dermatologic, ocular, and immunologic side effects are all possible.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                20 July 2020
                2020
                : 14
                : 2841-2851
                Affiliations
                [1 ]Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani , Sulaimani, Kurdistan Region, Iraq
                Author notes
                Correspondence: Tavga Ahmed Aziz Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani , Sulaimani, IraqTel +9647701523544 Email tavga.aziz@univsul.edu.iq
                Article
                255607
                10.2147/DDDT.S255607
                7381093
                © 2020 Aziz et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 6, Tables: 4, References: 32, Pages: 11
                Categories
                Original Research

                Comments

                Comment on this article