21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Negative- versus positive-pressure ventilation in intubated patients with acute respiratory distress syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Recent experimental data suggest that continuous external negative-pressure ventilation (CENPV) results in better oxygenation and less lung injury than continuous positive-pressure ventilation (CPPV). The effects of CENPV on patients with acute respiratory distress syndrome (ARDS) remain unknown.

          Methods

          We compared 2 h CENPV in a tankrespirator ("iron lung") with 2 h CPPV. The six intubated patients developed ARDS after pulmonary thrombectomy ( n = 1), aspiration ( n = 3), sepsis ( n = 1) or both ( n = 1). We used a tidal volume of 6 ml/kg predicted body weight and matched lung volumes at end expiration. Haemodynamics were assessed using the pulse contour cardiac output (PiCCO) system, and pressure measurements were referenced to atmospheric pressure.

          Results

          CENPV resulted in better oxygenation compared to CPPV (median ratio of arterial oxygen pressure to fraction of inspired oxygen of 345 mmHg (minimum-maximum 183 to 438 mmHg) vs 256 mmHg (minimum-maximum 123 to 419 mmHg) ( P < 0.05). Tank pressures were -32.5 cmH 2O (minimum-maximum -30 to -43) at end inspiration and -15 cmH 2O (minimum-maximum -15 to -19 cmH 2O) at end expiration. NO Inspiratory transpulmonary pressures decreased ( P = 0.04) and airway pressures were considerably lower at inspiration (-1.5 cmH 2O (minimum-maximum -3 to 0 cmH 2O) vs 34.5 cmH 2O (minimum-maximum 30 to 47 cmH 2O), P = 0.03) and expiration (4.5 cmH 2O (minimum-maximum 2 to 5) vs 16 cmH 2O (minimum-maximum 16 to 23), P =0.03). During CENPV, intraabdominal pressures decreased from 20.5 mmHg (12 to 30 mmHg) to 1 mmHg (minimum-maximum -7 to 5 mmHg) ( P = 0.03). Arterial pressures decreased by approximately 10 mmHg and central venous pressures by 18 mmHg. Intrathoracic blood volume indices and cardiac indices increased at the initiation of CENPV by 15% and 20% ( P < 0.05), respectively. Heart rate and extravascular lung water indices remained unchanged.

          Conclusions

          CENPV with a tank respirator improved gas exchange in patients with ARDS at lower transpulmonary, airway and intraabdominal pressures and, at least initially improving haemodynamics. Our observations encourage the consideration of further studies on the physiological effects and the clinical effectiveness of CENPV in patients with ARDS.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.

          To develop and validate a new Simplified Acute Physiology Score, the SAPS II, from a large sample of surgical and medical patients, and to provide a method to convert the score to a probability of hospital mortality. The SAPS II and the probability of hospital mortality were developed and validated using data from consecutive admissions to 137 adult medical and/or surgical intensive care units in 12 countries. The 13,152 patients were randomly divided into developmental (65%) and validation (35%) samples. Patients younger than 18 years, burn patients, coronary care patients, and cardiac surgery patients were excluded. Vital status at hospital discharge. The SAPS II includes only 17 variables: 12 physiology variables, age, type of admission (scheduled surgical, unscheduled surgical, or medical), and three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Goodness-of-fit tests indicated that the model performed well in the developmental sample and validated well in an independent sample of patients (P = .883 and P = .104 in the developmental and validation samples, respectively). The area under the receiver operating characteristic curve was 0.88 in the developmental sample and 0.86 in the validation sample. The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis. This is a starting point for future evaluation of the efficiency of intensive care units.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.

            In patients with the acute respiratory distress syndrome, massive alveolar collapse and cyclic lung reopening and overdistention during mechanical ventilation may perpetuate alveolar injury. We determined whether a ventilatory strategy designed to minimize such lung injuries could reduce not only pulmonary complications but also mortality at 28 days in patients with the acute respiratory distress syndrome. We randomly assigned 53 patients with early acute respiratory distress syndrome (including 28 described previously), all of whom were receiving identical hemodynamic and general support, to conventional or protective mechanical ventilation. Conventional ventilation was based on the strategy of maintaining the lowest positive end-expiratory pressure (PEEP) for acceptable oxygenation, with a tidal volume of 12 ml per kilogram of body weight and normal arterial carbon dioxide levels (35 to 38 mm Hg). Protective ventilation involved end-expiratory pressures above the lower inflection point on the static pressure-volume curve, a tidal volume of less than 6 ml per kilogram, driving pressures of less than 20 cm of water above the PEEP value, permissive hypercapnia, and preferential use of pressure-limited ventilatory modes. After 28 days, 11 of 29 patients (38 percent) in the protective-ventilation group had died, as compared with 17 of 24 (71 percent) in the conventional-ventilation group (P<0.001). The rates of weaning from mechanical ventilation were 66 percent in the protective-ventilation group and 29 percent in the conventional-ventilation group (P=0.005): the rates of clinical barotrauma were 7 percent and 42 percent, respectively (P=0.02), despite the use of higher PEEP and mean airway pressures in the protective-ventilation group. The difference in survival to hospital discharge was not significant; 13 of 29 patients (45 percent) in the protective-ventilation group died in the hospital, as compared with 17 of 24 in the conventional-ventilation group (71 percent, P=0.37). As compared with conventional ventilation, the protective strategy was associated with improved survival at 28 days, a higher rate of weaning from mechanical ventilation, and a lower rate of barotrauma in patients with the acute respiratory distress syndrome. Protective ventilation was not associated with a higher rate of survival to hospital discharge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lung opening and closing during ventilation of acute respiratory distress syndrome.

              The effects of high positive end-expiratory pressure (PEEP) strictly depend on lung recruitability, which varies widely during acute respiratory distress syndrome (ARDS). Unfortunately, increasing PEEP may lead to opposing effects on two main factors potentially worsening the lung injury, that is, alveolar strain and intratidal opening and closing, being detrimental (increasing the former) or beneficial (decreasing the latter). To investigate how lung recruitability influences alveolar strain and intratidal opening and closing after the application of high PEEP. We analyzed data from a database of 68 patients with acute lung injury or ARDS who underwent whole-lung computed tomography at 5, 15, and 45 cm H(2)O airway pressure. End-inspiratory nonaerated lung tissue was estimated from computed tomography pressure-volume curves. Alveolar strain and opening and closing lung tissue were computed at 5 and 15 cm H(2)O PEEP. In patients with a higher percentage of potentially recruitable lung, the increase in PEEP markedly reduced opening and closing lung tissue (P < 0.001), whereas no differences were observed in patients with a lower percentage of potentially recruitable lung. In contrast, alveolar strain similarly increased in the two groups (P = 0.89). Opening and closing lung tissue was distributed mainly in the dependent and hilar lung regions, and it appeared to be an independent risk factor for death (odds ratio, 1.10 for each 10-g increase). In ARDS, especially in patients with higher lung recruitability, the beneficial impact of reducing intratidal alveolar opening and closing by increasing PEEP prevails over the effects of increasing alveolar strain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2012
                2 March 2012
                : 16
                : 2
                : R37
                Affiliations
                [1 ]Anaesthesiology and Intensive Care Medicine, Medical School Hanover, Carl-Neuberg-Strasse 1, D-30625 Hanover, Germany
                [2 ]Anaesthesiology, St-Josefs-Hospital, Krankenhausstraße 13, D-49661 Cloppenburg, Germany
                [3 ]General, Visceral and Transplantation Surgery, Medical School Hanover, Hanover, Carl-Neuberg-Strasse 1, D-30625 Hanover, Germany
                [4 ]Unita' di Terapia Intensiva Pneumologica e, Fisiopatologia Toracica, DAI, Specialità medico-Chirurgiche, Azienda Ospedaliero-Universitaria Careggi, Padiglione San Luca, Via di San Luca 1, I-50136 Florence, Italy
                Article
                cc11216
                10.1186/cc11216
                3681349
                22386062
                ee4c10f9-3b94-492d-a973-5714590fa682
                Copyright ©2012 Raymondos et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 August 2011
                : 27 December 2011
                : 2 March 2012
                Categories
                Research

                Emergency medicine & Trauma
                iron lung,tank respirator,external negative-pressure ventilation,acute lung injury

                Comments

                Comment on this article