17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche.

          The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Characterization of differential properties of rabbit tendon stem cells and tenocytes

            Background Tendons are traditionally thought to consist of tenocytes only, the resident cells of tendons; however, a recent study has demonstrated that human and mouse tendons also contain stem cells, referred to as tendon stem/progenitor cells (TSCs). However, the differential properties of TSCs and tenocytes remain largely undefined. This study aims to characterize the properties of these tendon cells derived from rabbits. Methods TSCs and tenocytes were isolated from patellar and Achilles tendons of rabbits. The differentiation potential and cell marker expression of the two types of cells were examined using histochemical, immunohistochemical, and qRT-PCR analysis as well as in vivo implantation. In addition, morphology, colony formation, and proliferation of TSCs and tenocytes were also compared. Results It was found that TSCs were able to differentiate into adipocytes, chondrocytes, and osteocytes in vitro, and form tendon-like, cartilage-like, and bone-like tissues in vivo. In contrast, tenocytes had little such differentiation potential. Moreover, TSCs expressed the stem cell markers Oct-4, SSEA-4, and nucleostemin, whereas tenocytes expressed none of these markers. Morphologically, TSCs possessed smaller cell bodies and larger nuclei than ordinary tenocytes and had cobblestone-like morphology in confluent culture whereas tenocytes were highly elongated. TSCs also proliferated more quickly than tenocytes in culture. Additionally, TSCs from patellar tendons formed more numerous and larger colonies and proliferated more rapidly than TSCs from Achilles tendons. Conclusions TSCs exhibit distinct properties compared to tenocytes, including differences in cell marker expression, proliferative and differentiation potential, and cell morphology in culture. Future research should investigate the mechanobiology of TSCs and explore the possibility of using TSCs to more effectively repair or regenerate injured tendons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation.

              Mesenchymal stem cells (MSCs) derived from bone marrow are an important tool in tissue engineering and cell-based therapies because of their multipotent capacity. Majority of studies on MSCs have investigated the roles of growth factors, cytokines, and hormones. Antioxidants such as ascorbic acid can be used to expand MSCs while preserving their differentiation ability. Moreover, ascorbic acid can also stimulate MSC proliferation without reciprocal loss of phenotype and differentiation potency. In this study, we evaluated the effects of ascorbic acid on the proliferation, differentiation, extracellular matrix (ECM) secretion of MSCs. The MSCs were cultured in media containing various concentrations (0-500 microM) of L-ascorbate-2-phosphate (Asc-2-P) for 2 weeks, following which they were differentiated into adipocytes and osteoblasts. Ascorbic acid stimulated ECM secretion (collagen and glycosaminoglycan) and cell proliferation. Moreover, the phenotypes of the experimental groups as well as the differentiation potential of MSCs remained unchanged. The apparent absence of decreased cell density or morphologic change is consistent with the toxicity observed with 5-250 microM concentrations of Asc-2-P. The results demonstrate that MSC proliferation or differentiation depends on ascorbic acid concentration.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                9 May 2017
                28 February 2017
                : 8
                : 19
                : 31612-31625
                Affiliations
                1 Department of Orthopedic Injury, General Hospital of Jinan Military Area, Tianqiao District, Jinan, Shangdong, China
                Author notes
                Correspondence to: Yongxian Zhang, yongxianzhanggk@ 123456sina.com
                Article
                15779
                10.18632/oncotarget.15779
                5458234
                28404942
                eed264ea-55e3-4bc1-9175-9ba52b1702ec
                Copyright: © 2017 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 December 2016
                : 17 January 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                osteogenesis scaffold,ascorbic acid,β-glycerophosphate,dexamethasone,bone regeneration

                Comments

                Comment on this article