Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Estimation of pollutant sources in multi-zone buildings through different deconvolution algorithms

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective identification of pollution sources is particularly important for indoor air quality. Accurate estimation of source strength is the basis for source effective identification. This paper proposes an optimization method for the deconvolution process in the source strength inverse calculation. In the scheme, the concept of time resolution was defined, and combined with different filtering positions and filtering algorithms. The measures to reduce effects of measurement noise were quantitatively analyzed. Additionally, the performances of nine deconvolution inverse algorithms under experimental and simulated conditions were evaluated and scored. The hybrid algorithms were proposed and compared with single algorithms including Tikhonov regularization and iterative methods. Results showed that for the filtering position and algorithm, Butterworth filtering performed better, and different filtering positions had little effect on the inverse calculation. For the calculation time step, the optimal Tr (time resolution) was 0.667% and 1.33% in the simulation and experiment, respectively. The hybrid algorithms were found to not perform better than the single algorithms, and the SART (simultaneous algebraic reconstruction technique) algorithm from CAT (computer assisted tomography) yielded better performances in the accuracy and stability of source strength identification. The relative errors of the inverse calculation for source strength were typically below 25% using the optimization scheme.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

          Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community

            Significance Lack of human data on influenza virus aerosol shedding fuels debate over the importance of airborne transmission. We provide overwhelming evidence that humans generate infectious aerosols and quantitative data to improve mathematical models of transmission and public health interventions. We show that sneezing is rare and not important for—and that coughing is not required for—influenza virus aerosolization. Our findings, that upper and lower airway infection are independent and that fine-particle exhaled aerosols reflect infection in the lung, opened a pathway for a deeper understanding of the human biology of influenza infection and transmission. Our observation of an association between repeated vaccination and increased viral aerosol generation demonstrated the power of our method, but needs confirmation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares

                Bookmark

                Author and article information

                Contributors
                faylee@njtech.edu.cn
                fenglihang330@163.com
                Journal
                Build Simul
                Build Simul
                Building Simulation
                Tsinghua University Press (Beijing )
                1996-3599
                1996-8744
                10 September 2021
                : 1-14
                Affiliations
                [1 ]GRID grid.412022.7, ISNI 0000 0000 9389 5210, College of Urban Construction, , Nanjing Tech University, ; Nanjing, 210009 China
                [2 ]GRID grid.488137.1, ISNI 0000 0001 2267 2324, Institute of Defense Engineering, , Academy of Military Science, PLA, ; Beijing, 100850 China
                [3 ]GRID grid.412022.7, ISNI 0000 0000 9389 5210, College of Electrical Engineering and Control Science, , Nanjing Tech University, ; Nanjing, 210009 China
                Article
                826
                10.1007/s12273-021-0826-3
                8443894
                34545299
                eedd04a6-40ed-48e3-a3b2-ffb644c7a8be
                © Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 28 March 2021
                : 10 July 2021
                : 26 July 2021
                Categories
                Research Article

                pollutant source,measurement noise,inverse algorithm,indoor air,algorithm ranking

                Comments

                Comment on this article