0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Origin of Rashba Spin Splitting and Strain Tunability in Ferroelectric Bulk CsPbF3.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spin-orbit coupling (SOC) in conjunction with broken inversion symmetry acts as a key ingredient for several intriguing quantum phenomena, viz., Rashba-Dresselhaus (RD) effect. The coexistence of spontaneous polarization and the RD effect in ferroelectric (FE) materials enables the electrical control of spin degrees of freedom. Here, we explore the FE lead halide perovskite CsPbF3 as a potential candidate in the field of spintronics by employing state-of-the-art first-principles-based methodologies, viz., density functional theory (DFT) with semilocal and hybrid functional (HSE06) combined with SOC and many-body perturbation theory (G0W0). For a deeper understanding of the observed spin splitting, the spin textures are analyzed using the k.p model Hamiltonian. We find there is no out-of-plane spin component indicating that the Rashba splitting dominates over Dresselhaus splitting. We also observe that the strength of Rashba spin splitting can be substantially tuned on application of uniaxial strain (±5%). More interestingly, we notice reversible spin textures by switching the FE polarization in CsPbF3 perovskite, making it potent for perovskite-based spintronic applications.

          Related collections

          Author and article information

          Journal
          J Phys Chem Lett
          The journal of physical chemistry letters
          American Chemical Society (ACS)
          1948-7185
          1948-7185
          Oct 07 2021
          : 12
          : 39
          Affiliations
          [1 ] Department of Physics, Indian Institute of Technology Delhi, New Delhi, India 110016.
          Article
          10.1021/acs.jpclett.1c02596
          34570976
          eef0d6af-3c18-4cb0-ba34-3c90ed2781dd
          History

          Comments

          Comment on this article