15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Methanogens, sulphate and heavy metals: a complex system

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of anaerobic digestion process: a review.

          Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ecology and biotechnology of sulphate-reducing bacteria.

            Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial heavy-metal resistance.

              D. Nies (1999)
              We are just beginning to understand the metabolism of heavy metals and to use their metabolic functions in biotechnology, although heavy metals comprise the major part of the elements in the periodic table. Because they can form complex compounds, some heavy metal ions are essential trace elements, but, essential or not, most heavy metals are toxic at higher concentrations. This review describes the workings of known metal-resistance systems in microorganisms. After an account of the basic principles of homoeostasis for all heavy-metal ions, the transport of the 17 most important (heavy metal) elements is compared.
                Bookmark

                Author and article information

                Journal
                Reviews in Environmental Science and Bio/Technology
                Rev Environ Sci Biotechnol
                Springer Nature
                1569-1705
                1572-9826
                December 2015
                November 2015
                : 14
                : 4
                : 537-553
                Article
                10.1007/s11157-015-9387-1
                ef03d443-7ac1-44c2-a0b3-ad9f8722b829
                © 2015
                History

                Comments

                Comment on this article