6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          In multicellular organisms, a single genome gives rise to a multitude of cell types by enforcing appropriate gene expression patterns. Epigenetic mechanisms involving modification of histones, including tri-methylation of histone H3 lysine 9 (H3K9me3), assemble and propagate repressive heterochromatin to prevent untimely gene expression. Dysregulation of epigenetic gene-silencing mechanisms is a hallmark of a variety of diseases including cancer. However, the requirements for epigenetic transmission of heterochromatin are not well understood. This study reveals the mechanism by which methylated histones provide an epigenetic template for heterochromatin propagation. We discover that a critical threshold of H3K9me3 is required for effective chromatin-association of the histone methyltransferase, which binds to and catalyzes additional H3K9me to propagate heterochromatin and enforce stable gene silencing.

          Abstract

          Heterochromatin assembly requires methylation of histone H3 lysine 9 (H3K9me) and serves as a paradigm for understanding the importance of histone modifications in epigenetic genome control. Heterochromatin is nucleated at specific genomic sites and spreads across extended chromosomal domains to promote gene silencing. Moreover, heterochromatic structures can be epigenetically inherited in a self-templating manner, which is critical for stable gene repression. The spreading and inheritance of heterochromatin are believed to be dependent on preexisting H3K9 tri-methylation (H3K9me3), which is recognized by the histone methyltransferase Clr4/Suv39h via its chromodomain, to promote further deposition of H3K9me. However, the process involving the coupling of the “read” and “write” capabilities of histone methyltransferases is poorly understood. From an unbiased genetic screen, we characterize a dominant-negative mutation in histone H3 (H3 G13D) that impairs the propagation of endogenous and ectopic heterochromatin domains in the fission yeast genome. H3 G13D blocks methylation of H3K9 by the Clr4/Suv39h methyltransferase and acts in a dosage-dependent manner to interfere with the spreading and maintenance of heterochromatin. Our analyses show that the incorporation of unmethylatable histone H3 G13D into chromatin decreases H3K9me3 density and thereby compromises the read-write capability of Clr4/Suv39h. Consistently, enhancing the affinity of Clr4/Suv39h for methylated H3K9 is sufficient to overcome the defects in heterochromatin assembly caused by H3 G13D. Our work directly implicates methylated histones in the transmission of epigenetic memory and shows that a critical density threshold of H3K9me3 is required to promote epigenetic inheritance of heterochromatin through the read-write mechanism.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

          Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Translating the histone code.

            Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a "histone code" that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma.

              Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc Natl Acad Sci U S A
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                01 June 2021
                25 May 2021
                25 May 2021
                : 118
                : 22
                : e2100699118
                Affiliations
                [1] aLaboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH , Bethesda, MD 20892
                Author notes
                2To whom correspondence may be addressed. Email: grewals@ 123456mail.nih.gov .

                Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved April 20, 2021 (received for review January 12, 2021)

                Author contributions: A.R.C.D. and S.I.S.G. designed research; A.R.C.D., N.T., and J.D. performed research; A.R.C.D. and J.D. contributed new reagents; A.R.C.D., N.T., D.W., S.H., and S.I.S.G. analyzed data; and A.R.C.D. and S.I.S.G. wrote the paper.

                1Present address: Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.

                Author information
                https://orcid.org/0000-0002-5513-5282
                https://orcid.org/0000-0001-5186-0180
                Article
                202100699
                10.1073/pnas.2100699118
                8179192
                34035174
                ef8c9bfb-48b9-4cb2-abcc-80e22c01c3e9
                Copyright © 2021 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 10
                Funding
                Funded by: HHS | NIH | National Cancer Institute (NCI) 100000054
                Award ID: 8341225
                Award Recipient : Amber R DiPiazza Award Recipient : Nitika Taneja Award Recipient : Jothy Dhakshnamoorthy Award Recipient : David Wheeler Award Recipient : Sahana Holla Award Recipient : Shiv I. S. Grewal
                Categories
                419
                Biological Sciences
                Genetics

                heterochromatin,epigenetic,histone methylation,gene silencing

                Comments

                Comment on this article