5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-asthmatic fraction screening and mechanisms prediction of Schisandrae Sphenantherae Fructus based on a combined approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Schisandrae Sphenantherae Fructus (SSF) is a traditional Chinese medicine used to treat coughs and pulmonary inflammatory diseases. However, the pharmacodynamic material basis and mechanisms for SSF in asthma treatment remain unclear. This study aims to screen the anti-asthmatic fraction and verify the pharmacodynamic material basis, predict the potential mechanism, and verify the interaction ability between compounds and core targets.

          Methods: First, three fractions from SSF were compared in terms of composition, comparison, and anti-asthmatic effects. Then, the ultra-performance liquid chromatography-quadrupole/time-of-flight-mass spectrometry/mass spectrometry (UPLC-Q/TOF-MS/MS) strategy was used to identify the compounds from the active fraction, and the anti-asthmatic efficacy of the active fraction was further studied by the ovalbumin (OVA)-induced asthma murine model. Finally, network pharmacology and molecular methods were used to study the relationships between active compounds, core targets, and key pathways of PEF in asthma treatments.

          Results: The petroleum ether fraction (PEF) of SSF showed better effects and could significantly diminish lung inflammation and mitigate the level of serum immunoglobulin E (IgE), interleukin (IL)-4, IL-5, IL-6, IL-13, and IL-17 in mice. A total of 26 compounds from the PEF were identified, among which the main compounds are lignans and triterpenes. Moreover, 21 active compounds, 129 overlap-ping targets, and 10 pathways were screened by network pharmacology tools. The top five core targets may play a great role in asthma treatment. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the PEF can treat asthma by acting on multiple asthma pathological processes, including the IL-17 signaling pathway, T helper (Th) 17 cell differentiation, and the calcium signaling pathway. Molecular docking was performed to evaluate the interactions of the protein–ligand binding, and most docked complexes had a good binding ability.

          Conclusion: The present results might contribute to exploring the active compounds with anti-asthmatic activity.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

            AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. Copyright 2009 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.

              We describe the testing and release of AutoDock4 and the accompanying graphical user interface AutoDockTools. AutoDock4 incorporates limited flexibility in the receptor. Several tests are reported here, including a redocking experiment with 188 diverse ligand-protein complexes and a cross-docking experiment using flexible sidechains in 87 HIV protease complexes. We also report its utility in analysis of covalently bound ligands, using both a grid-based docking method and a modification of the flexible sidechain technique. (c) 2009 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                12 September 2022
                2022
                : 13
                : 902324
                Affiliations
                [1] 1 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine , Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
                [2] 2 Engineering Research Center of Traditional Chinese Medicine Resource , Peking Union Medical College , Institute of Medicinal Plant Development , Ministry of Education , Chinese Academy of Medical Sciences , Beijing, China
                [3] 3 Animal Science and Technology College , Beijing University of Agriculture , Beijing, China
                Author notes

                Edited by: Liping Kang, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, China

                Reviewed by: Niyaz Ahmad, Imam Abdulrahman Bin Faisal University, Saudi Arabia

                Zhihong Yao, Jinan University, China

                Gui-Sheng Zhou, Nanjing University of Chinese Medicine, China

                *Correspondence: Haitao Liu, htliu0718@ 123456126.com

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                902324
                10.3389/fphar.2022.902324
                9511055
                efcf6324-79d4-4150-83a6-7a9168cb6d1b
                Copyright © 2022 Li, Li, Liu, Wei, Qiang, Mu, Wang, Qi, Zhang, Liu and Xiao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 March 2022
                : 17 August 2022
                Funding
                Funded by: Chinese Academy of Medical Sciences , doi 10.13039/501100005150;
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                active fraction screening,anti-asthma,molecular docking,network pharmacology,schisandrae sphenantherae fructus,uplc-q/tof-ms/ms

                Comments

                Comment on this article