0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Analysis of a Mosaic Fra(16)(q22)/Del(16)(q22) Karyotype in a Primary Infertile Woman

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Fragile sites are specific chromosomal regions showing gaps, poor staining, contractions, or even breaks in the chromosomes. These spontaneous and heritable fragile sites are prone to structural variations which can lead to adverse reproductive outcomes. This paper aims to present a specific case study of a female patient, with a mosaic karyotype involving chromosome 16q22 fragile site which is very rare in clinic and her experience of infertility.

          Case Presentation

          A 37-year-old woman is diagnosed with ten-year primary infertility. She worked in a factory, and she was occasionally exposed to paint. She underwent two cycles of follicular monitoring with intrauterine insemination (IUI) using her husband’s sperm six years ago but failed. Most of her prepregnancy tests were normal, except a not smooth right fallopian tube. Her G-band karyotype of peripheral blood lymphocytes was mos 46, XX, del(16)(q22)[40]/46, XX, fra(16)(q22)[29]/46, XX, fra(16)tr(16)(q22)[3]/46, XX[28] which inherited from her mother. The SCE assay detected a significantly higher frequency of SCEs in the 16q region of the patient’s chromosomes compared to her mother and a healthy control. However, the average SCEs per chromosome were quite close. Moreover, copy number variation (CNV) sequencing showed no deletion nor duplication at 16q22.

          Conclusion

          Infertility cannot be completely attributed to the fragile site on chromosome 16q22. Assisted reproductive technology combined with preimplantation genetic testing may help in achieving a healthy live birth.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis for expression of common and rare fragile sites.

          Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human chromosome fragility.

            Fragile sites are heritable specific chromosome loci that exhibit an increased frequency of gaps, poor staining, constrictions or breaks when chromosomes are exposed to partial DNA replication inhibition. They constitute areas of chromatin that fail to compact during mitosis. They are classified as rare or common depending on their frequency within the population and are further subdivided on the basis of their specific induction chemistry into different groups differentiated as folate sensitive or non-folate sensitive rare fragile sites, and as aphidicolin, bromodeoxyuridine (BrdU) or 5-azacytidine inducible common fragile sites. Most of the known inducers of fragility share in common their potentiality to inhibit the elongation of DNA replication, particularly at fragile site loci. Seven folate sensitive (FRA10A, FRA11B, FRA12A, FRA16A, FRAXA, FRAXE and FRAXF) and two non-folate sensitive (FRA10B and FRA16B) fragile sites have been molecularly characterized. All have been found to represent expanded DNA repeat sequences resulting from a dynamic mutation involving the normally occurring polymorphic CCG/CGG trinucleotide repeats at the folate sensitive and AT-rich minisatellite repeats at the non-folate sensitive fragile sites. These expanded repeats were demonstrated, first, to have the potential, under certain conditions, to form stable secondary non-B DNA structures (intra-strand hairpins, slipped strand DNA or tetrahelical structures) and to present highly flexible repeat sequences, both conditions which are expected to affect the replication dynamics, and second, to decrease the efficiency of nucleosome assembly, resulting in decondensation defects seen as fragile sites. Thirteen aphidicolin inducible common fragile sites (FRA2G, FRA3B, FRA4F, FRA6E, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA8C, FRA9E, FRA16D and FRAXB) have been characterized at a molecular level and found to represent relatively AT-rich DNA areas, but without any expanded repeat motifs. Analysis of structural characteristics of the DNA at some of these sites (FRA2G, FRA3B, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA16D and FRAXB) showed that they contained more areas of high DNA torsional flexibility with more highly AT-dinucleotide-rich islands than neighbouring non-fragile regions. These islands were shown to have the potential to form secondary non-B DNA structures and to interfere with higher-order chromatin folding. Therefore, a common fragility mechanism, characterized by high flexibility and the potential to form secondary structures and interfere with nucleosome assembly, is shared by all the cloned classes of fragile sites. From the clinical point of view, the folate sensitive rare fragile site FRAXA is the most important fragile site as it is associated with the fragile X syndrome, the most common form of familial mental retardation, affecting about 1/4000 males and 1/6000 females. Mental retardation in this syndrome is considered as resulting from the abolition of the FMR1 gene expression due to hypermethylation of the gene CpG islands adjacent to the expanded methylated trinucleotide repeat. FRAXE is associated with X-linked non-specific mental retardation, and FRA11B with Jacobsen syndrome. There is also some evidence that fragile sites, especially common fragile sites, are consistently involved in the in vivo chromosomal rearrangements related to cancer, whereas the possible implication of common fragile sites in neuropsychiatric and developmental disorders is still poorly documented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fragile sites and human disease.

              A relationship between fragile sites, specific genomic regions visible as gaps or breaks on cultivated chromosomes, and human disease has been proposed many years ago. Evidence for a role of the ubiquitously expressed common fragile sites characterized by peculiar genome architecture in cancer has been accumulated over the last years. In contrast, a relationship between the second main group of fragile sites characterized by repeat expansion, the rare fragile sites, and mental retardation has been proposed many years ago, but after the molecular cloning of FRAXA and FRAXE both unequivocally involved in mental retardation, no additional fragile sites linked with mental retardation have been cloned for over a decade. The recent cloning of new fragile sites and the identification of the associated genes allow us to readdress this old paradigm and to speculate on the role these might play in human disease.
                Bookmark

                Author and article information

                Journal
                Int J Womens Health
                Int J Womens Health
                ijwh
                International Journal of Women's Health
                Dove
                1179-1411
                16 April 2024
                2024
                : 16
                : 637-644
                Affiliations
                [1 ]Centre for Reproductive and Genetic Medicine, Dalian Women and Children’s Medical Group , Dalian, People’s Republic of China
                [2 ]Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian Municipal Central Hospital , Dalian, People’s Republic of China
                [3 ]Department of Clinical Laboratory, Dalian Women and Children’s Medical Group , Dalian, People’s Republic of China
                Author notes
                Correspondence: Ming Shi, Centre for Reproductive and Genetic Medicine & Department of Clinical Laboratory, Dalian Women and Children’s Medical Group, Dalian, 116037, People’s Republic of China, Email zhsh6655@sohu.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-8176-7937
                http://orcid.org/0000-0001-9133-2403
                Article
                450272
                10.2147/IJWH.S450272
                11032136
                38645979
                efdae871-a3db-44a6-8b5f-96ce377819d4
                © 2024 He et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 01 December 2023
                : 29 March 2024
                Page count
                Figures: 3, Tables: 2, References: 22, Pages: 8
                Funding
                Funded by: PhD career start-up foundation of Dalian Women and Children’s Medical Group, Dalian, China;
                PhD career start-up foundation of Dalian Women and Children’s Medical Group, Dalian, China, 2022-BSQD-0156.
                Categories
                Case Report

                Obstetrics & Gynecology
                fragile sites,infertility,fra(16)(q22),del(16)(q22),sce,cnv
                Obstetrics & Gynecology
                fragile sites, infertility, fra(16)(q22), del(16)(q22), sce, cnv

                Comments

                Comment on this article