10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule) or muc1 (mucin1) expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell) occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon). The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots) and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1) or BHQ2 (black hole quencher2). In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

          Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy.

            EpCAM (epithelial cell adhesion molecule) is a cell surface molecule that is known to be highly expressed in colon and other epithelial carcinomas. EpCAM is involved in cell-to-cell adhesion and has been the target of antibody therapy in several clinical trials. To assess the value of EpCAM as a novel target for breast cancer gene therapy, we performed real-time reverse transcription-PCR to quantify the level of EpCAM mRNA expression in normal breast tissue and primary and metastatic breast cancers. We found that EpCAM is overexpressed 100- to 1000-fold in primary and metastatic breast cancer. Silencing EpCAM gene expression with EpCAM short interfering RNA (siRNA) resulted in a 35-80% decrease in the rate of cell proliferation in four different breast cancer cell lines. EpCAM siRNA treatment decreased cell migration by 91.8% and cell invasion by 96.4% in the breast cancer cell line MDA-MB-231 in vitro. EpCAM siRNA treatment was also associated with an increase in the detergent-insoluble protein fraction of E-cadherin, alpha-catenin, and beta-catenin, consistent with the known biology of EpCAM as a regulator of cell adhesion. Our hypothesis is that modulation of EpCAM expression can affect cell migration, invasion, and proliferation by enhancing E-cadherin-mediated cell-to-cell adhesion. These data provide compelling evidence that EpCAM is a potential novel target for breast cancer gene therapy and offer insights into the mechanisms associated with EpCAM gene silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anti-Epithelial Cell Adhesion Molecule Antibodies and the Detection of Circulating Normal-Like Breast Tumor Cells

              Identification of specific subtypes of circulating tumor cells in peripheral blood of cancer patients can provide information about the biology of metastasis and improve patient management. However, to be effective, the method used to identify circulating tumor cells must detect all tumor cell types. We investigated whether the five subtypes of human breast cancer cells that have been defined by global gene expression profiling—normal-like, basal, HER2-positive, and luminal A and B—were identified by CellSearch, a US Food and Drug Administration–approved test that uses antibodies against the cell surface–expressed epithelial cell adhesion molecule (EpCAM) to isolate circulating tumor cells. We used global gene expression profiling to determine the subtypes of a well-defined panel of 34 human breast cancer cell lines (15 luminal, nine normal-like, five basal-like, and five Her2-positive). We mixed 50-150 cells from 10 of these cell lines with 7.5 mL of blood from a single healthy human donor, and the mixtures were subjected to the CellSearch test to isolate the breast cancer cells. We found that the CellSearch isolation method, which uses EpCAM on the surface of circulating tumor cells for cell isolation, did not recognize, in particular, normal-like breast cancer cells, which in general have aggressive features. New tests that include antibodies that specifically recognize normal-like breast tumor cells but not cells of hematopoietic origin are needed.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                23 November 2016
                November 2016
                : 16
                : 11
                : 1909
                Affiliations
                [1 ]Preclinical Research Center, Biomedical Research Institute, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; labanimal@ 123456snubh.org
                [2 ]The Institute for the 3Rs, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
                [3 ]Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; lingokst@ 123456snu.ac.kr (S.T.K.); hanhs@ 123456snubh.org (H.-S.H.)
                [4 ]Asan Institute for Life Sciences, Asan Medical Center, Seoul, Department of Medicine, University of Ulsan College of Medicine, 43 gil Olympic-ro, Pungnap dong, Songpa gu, Seoul 138-736, Korea; kimkyunggon@ 123456gmail.com
                Author notes
                [* ]Correspondence: labvet@ 123456konkuk.ac.kr ; Tel.: +82-02-2049-6114
                [†]

                These authors contributed equally to this work.

                Article
                sensors-16-01909
                10.3390/s16111909
                5134568
                27886058
                efe9831d-f993-4c8d-bd40-30353870966b
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 August 2016
                : 02 November 2016
                Categories
                Article

                Biomedical engineering
                epcam,aptamer,alb,metastasis,molecular beacon
                Biomedical engineering
                epcam, aptamer, alb, metastasis, molecular beacon

                Comments

                Comment on this article