Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and Hydrodynamic Forces.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ellipsoidal particles have previously been shown to suppress the coffee-ring effect in millimeter-sized colloidal droplets. Compared to their spherical counterparts, ellipsoidal particles experience stronger adsorption energy to the drop surface where the anisotropy-induced deformation of the liquid-air interface leads to much greater capillary attractions between particles. Using inkjet-printed colloidal drops of varying drop size, particle concentration, and particle aspect ratio, the present work demonstrates how the suppression of the coffee ring is not only a function of particle anisotropy but rather a competition between the propensity for particles to assemble at the drop surface via capillary interactions and the evaporation-driven particle motion to the contact line. For ellipsoidal particles on the drop surface, the capillary force (Fγ) increases with the particle concentration and aspect ratio, and the hydrodynamic force (Fμ) increases with the particle aspect ratio but decreases with drop size. When Fγ/Fμ > 1, the surface ellipsoids form a coherent network inhibiting their migration to the drop contact line, and the coffee-ring effect is suppressed, whereas when Fγ/Fμ < 1, the ellipsoids move to the contact line, resulting in coffee-ring deposition.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          November 15 2016
          : 32
          : 45
          Affiliations
          [1 ] Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, United States.
          [2 ] Department of Mechanical and Aerospace Engineering, Princeton University , Princeton, New Jersey 08544, United States.
          Article
          10.1021/acs.langmuir.6b03221
          27788012
          efec74ab-12be-4f7e-a54a-4891e517d5a4
          History

          Comments

          Comment on this article