1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Combination of Ex Vivo and In Vivo Strategies for Evaluating How Much New Oral Anticoagulants Exacerbate Experimental Intracerebral Bleeding

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background  Intracerebral hemorrhage is the most serious complication of anticoagulant therapy but the effects of different types of oral anticoagulants on the expansion of these hemorrhages are still unclear. Clinical studies have revealed controversial results; more robust and long-term clinical evaluations are necessary to define their outcomes. An alternative is to test the effect of these drugs in experimental models of intracerebral bleeding induced in animals.

          Aims  To test new oral anticoagulants (dabigatran etexilate, rivaroxaban, and apixaban) in an experimental model of intracerebral hemorrhage induced by collagenase injection into the brain striatum of rats. Warfarin was used for comparison.

          Methods  Ex vivo anticoagulant assays and an experimental model of venous thrombosis were employed to determine the doses and periods of time required for the anticoagulants to achieve their maximum effects. Subsequently, volumes of brain hematoma were evaluated after administration of the anticoagulants, using these same parameters. Volumes of brain hematoma were evaluated by magnetic resonance imaging, H&E (hematoxylin and eosin) staining, and Evans blue extravasation. Neuromotor function was assessed by the elevated body swing test.

          Results and Conclusions  The new oral anticoagulants did not increase intracranial bleeding compared with control animals, while warfarin markedly favored expansion of the hematomas, as revealed by magnetic resonance imaging and H&E staining. Dabigatran etexilate caused a modest but statistically significant increase in Evans blue extravasation. We did not observe significant differences in elevated body swing tests among the experimental groups. The new oral anticoagulants may provide a better control over a brain hemorrhage than warfarin.

          Abstract

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).

          This chapter about treatment for venous thromboembolic disease is part of the American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Grade 1 recommendations are strong and indicate that the benefits do or do not outweigh risks, burden, and costs. Grade 2 suggests that individual patient values may lead to different choices (for a full understanding of the grading, see "Grades of Recommendation" chapter). Among the key recommendations in this chapter are the following: for patients with objectively confirmed deep vein thrombosis (DVT) or pulmonary embolism (PE), we recommend anticoagulant therapy with subcutaneous (SC) low-molecular-weight heparin (LMWH), monitored IV, or SC unfractionated heparin (UFH), unmonitored weight-based SC UFH, or SC fondaparinux (all Grade 1A). For patients with a high clinical suspicion of DVT or PE, we recommend treatment with anticoagulants while awaiting the outcome of diagnostic tests (Grade 1C). For patients with confirmed PE, we recommend early evaluation of the risks to benefits of thrombolytic therapy (Grade 1C); for those with hemodynamic compromise, we recommend short-course thrombolytic therapy (Grade 1B); and for those with nonmassive PE, we recommend against the use of thrombolytic therapy (Grade 1B). In acute DVT or PE, we recommend initial treatment with LMWH, UFH or fondaparinux for at least 5 days rather than a shorter period (Grade 1C); and initiation of vitamin K antagonists (VKAs) together with LMWH, UFH, or fondaparinux on the first treatment day, and discontinuation of these heparin preparations when the international normalized ratio (INR) is > or = 2.0 for at least 24 h (Grade 1A). For patients with DVT or PE secondary to a transient (reversible) risk factor, we recommend treatment with a VKA for 3 months over treatment for shorter periods (Grade 1A). For patients with unprovoked DVT or PE, we recommend treatment with a VKA for at least 3 months (Grade 1A), and that all patients are then evaluated for the risks to benefits of indefinite therapy (Grade 1C). We recommend indefinite anticoagulant therapy for patients with a first unprovoked proximal DVT or PE and a low risk of bleeding when this is consistent with the patient's preference (Grade 1A), and for most patients with a second unprovoked DVT (Grade 1A). We recommend that the dose of VKA be adjusted to maintain a target INR of 2.5 (INR range, 2.0 to 3.0) for all treatment durations (Grade 1A). We recommend at least 3 months of treatment with LMWH for patients with VTE and cancer (Grade 1A), followed by treatment with LMWH or VKA as long as the cancer is active (Grade 1C). For prevention of postthrombotic syndrome (PTS) after proximal DVT, we recommend use of an elastic compression stocking (Grade 1A). For DVT of the upper extremity, we recommend similar treatment as for DVT of the leg (Grade 1C). Selected patients with lower-extremity (Grade 2B) and upper-extremity (Grade 2C). DVT may be considered for thrombus removal, generally using catheter-based thrombolytic techniques. For extensive superficial vein thrombosis, we recommend treatment with prophylactic or intermediate doses of LMWH or intermediate doses of UFH for 4 weeks (Grade 1B).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation after intracerebral hemorrhage.

            Intracerebral hemorrhage (ICH) is a devastating clinical event without effective therapies. Increasing evidence suggests that inflammatory mechanisms are involved in the progression of ICH-induced brain injury. Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including prostaglandins, chemokines, cytokines, extracellular proteases, and reactive oxygen species. Better understanding of the role of the ICH-induced inflammatory response and its potential for modulation might have profound implications for patient treatment. In this review, a summary of the available literature on the inflammatory responses after ICH is presented along with discussion of some of the emerging opportunities for potential therapeutic strategies. In the near future, additional strategies that target inflammation could offer exciting new promise in the therapeutic approach to ICH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collagenase-induced intracerebral hemorrhage in rats.

              Intracranial bleeding is an important cause of brain masses and edema. To study the pathophysiology of intracerebral hemorrhage, we produced experimental hemorrhages in 53 rats and characterized the lesion by histology, brain water content, and behavior. Adult rats had 2 microliters saline containing 0.5 unit bacterial collagenase infused into the left caudate nucleus. Histologically, erythrocytes were seen around blood vessels at the needle puncture site within the first hour. By 4 hours there were hematomas, the size of which depended on the amount of collagenase injected. Necrotic masses containing fluid, blood cells, and fibrin were seen at 24 hours. Lipid-filled macrophages were observed at 7 days and cysts at 3 weeks. Water content was significantly increased 4, 24, and 48 hours after infusion at the needle puncture site and for 24 hours in posterior brain sections. Behavioral abnormalities were present for 48 hours, with recovery of function occurring during the first week. Brain tissue contains Type IV collagen in the basal lamina. Collagenase, which occurs in an inactive form in cells, is released and activated during injury, leading to disruption of the extracellular matrix. Collagenase-induced intracerebral hemorrhage is a reproducible animal model for the study of the effects of the hematoma and brain edema.
                Bookmark

                Author and article information

                Journal
                TH Open
                TH Open
                10.1055/s-00033990
                TH Open: Companion Journal to Thrombosis and Haemostasis
                Georg Thieme Verlag KG (Rüdigerstraße 14, 70469 Stuttgart, Germany )
                2567-3459
                2512-9465
                10 July 2023
                July 2023
                1 July 2023
                : 7
                : 3
                : e195-e205
                Affiliations
                [1 ]Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
                [2 ]Laboratório de Coagulação e Trombose, Hospital Universitário Clementino Fraga Filho, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
                [3 ]Centro de Imagens e Espectroscopia por Ressonância Magnética (CIERMag). Departamento de Física e Ciência Interdisciplinar. Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
                [4 ]Laboratório Intermediário de Neuropatologia Experimental. Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
                [5 ]Laboratório Intermediário de Neuropatologia Experimental. Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
                Author notes
                Address for correspondence Roberto J. C. Fonseca, PhD Laboratório de Coagulação e Trombose, Hospital Universitário Clementino Fraga Filho, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJBrazil robertofonseca@ 123456hucff.ufrj.br
                Article
                THOpen-23-04-0015
                10.1055/s-0043-1770782
                10332909
                f03aba43-a6af-46db-ba51-a38d4efc5f13
                The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. ( https://creativecommons.org/licenses/by/4.0/ )

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 March 2023
                : 22 May 2023
                Funding
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
                Funded by: Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
                Funding This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
                Categories
                Original Article

                intracerebral hemorrhage,apixaban,rivaroxaban,dabigatran,warfarin

                Comments

                Comment on this article