34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification and characterization ofBph14, a gene conferring resistance to brown planthopper in rice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Planthoppers are highly destructive pests in crop production worldwide. Brown planthopper (BPH) causes the most serious damage of the rice crop globally among all rice pests. Growing resistant varieties is the most effective and environment-friendly strategy for protecting the crop from BPH. More than 19 BPH-resistance genes have been reported and used to various extents in rice breeding and production. In this study, we cloned Bph14, a gene conferring resistance to BPH at seedling and maturity stages of the rice plant, using a map-base cloning approach. We show that Bph14 encodes a coiled-coil, nucleotide-binding, and leucine-rich repeat (CC-NB-LRR) protein. Sequence comparison indicates that Bph14 carries a unique LRR domain that might function in recognition of the BPH insect invasion and activating the defense response. Bph14 is predominantly expressed in vascular bundles, the site of BPH feeding. Expression of Bph14 activates the salicylic acid signaling pathway and induces callose deposition in phloem cells and trypsin inhibitor production after planthopper infestation, thus reducing the feeding, growth rate, and longevity of the BPH insects. Our work provides insights into the molecular mechanisms of rice defense against insects and facilitates the development of resistant varieties to control this devastating insect.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Resistance gene-dependent plant defense responses.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strategies for developing Green Super Rice.

            Qifa Zhang (2007)
            From a global viewpoint, a number of challenges need to be met for sustainable rice production: (i) increasingly severe occurrence of insects and diseases and indiscriminate pesticide applications; (ii) high pressure for yield increase and overuse of fertilizers; (iii) water shortage and increasingly frequent occurrence of drought; and (iv) extensive cultivation in marginal lands. A combination of approaches based on the recent advances in genomic research has been formulated to address these challenges, with the long-term goal to develop rice cultivars referred to as Green Super Rice. On the premise of continued yield increase and quality improvement, Green Super Rice should possess resistances to multiple insects and diseases, high nutrient efficiency, and drought resistance, promising to greatly reduce the consumption of pesticides, chemical fertilizers, and water. Large efforts have been focused on identifying germplasms and discovering genes for resistance to diseases and insects, N- and P-use efficiency, drought resistance, grain quality, and yield. The approaches adopted include screening of germplasm collections and mutant libraries, gene discovery and identification, microarray analysis of differentially regulated genes under stressed conditions, and functional test of candidate genes by transgenic analysis. Genes for almost all of the traits have now been isolated in a global perspective and are gradually incorporated into genetic backgrounds of elite cultivars by molecular marker-assisted selection or transformation. It is anticipated that such strategies and efforts would eventually lead to the development of Green Super Rice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

              The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 29 2009
                December 29 2009
                December 29 2009
                December 14 2009
                : 106
                : 52
                : 22163-22168
                Article
                10.1073/pnas.0912139106
                2793316
                20018701
                f08af727-eec5-4ea5-b03c-6cd475170614
                © 2009
                History

                Comments

                Comment on this article