25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Replenishment of fish populations is threatened by ocean acidification

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is increasing concern that ocean acidification, caused by the uptake of additional CO(2) at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO(2) predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO(2), with many individuals becoming attracted to the smell of predators. At 850 ppm CO(2), the ability to sense predators was completely impaired. Larvae exposed to elevated CO(2) were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5-9 times higher mortality from predation than current-day controls, with mortality increasing with CO(2) concentration. Our results show that additional CO(2) absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Coral reefs under rapid climate change and ocean acidification.

          Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

            The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ocean acidification causes bleaching and productivity loss in coral reef builders.

              Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO(2) levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO(2) is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO(2) induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO(2) scenario led to a 30% increase in productivity in Acropora, whereas high CO(2) lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO(2) leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 20 2010
                July 20 2010
                July 06 2010
                July 20 2010
                : 107
                : 29
                : 12930-12934
                Article
                10.1073/pnas.1004519107
                2919925
                20615968
                f0c1efea-eba0-4274-be2b-eca045008ab0
                © 2010
                History

                Comments

                Comment on this article