17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical Layer Security in Downlink Multi-Antenna Cellular Networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we study physical layer security for the downlink of cellular networks, where the confidential messages transmitted to each mobile user can be eavesdropped by both (i) the other users in the same cell and (ii) the users in the other cells. The locations of base stations and mobile users are modeled as two independent two-dimensional Poisson point processes. Using the proposed model, we analyze the secrecy rates achievable by regularized channel inversion (RCI) precoding by performing a large-system analysis that combines tools from stochastic geometry and random matrix theory. We obtain approximations for the probability of secrecy outage and the mean secrecy rate, and characterize regimes where RCI precoding achieves a nonzero secrecy rate. We find that unlike isolated cells, the secrecy rate in a cellular network does not grow monotonically with the transmit power, and the network tends to be in secrecy outage if the transmit power grows unbounded. Furthermore, we show that there is an optimal value for the base station deployment density that maximizes the secrecy rate, and this value is a decreasing function of the signal-to-noise ratio.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Tractable Approach to Coverage and Rate in Cellular Networks

          , , (2011)
          Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

            , , (2012)
            Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication—Part I: Channel Inversion and Regularization

                Bookmark

                Author and article information

                Journal
                2013-07-26
                Article
                10.1109/TCOMM.2014.2314664
                1307.7211
                f0c5fc3d-3414-401d-984d-501dd016aada

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                submitted to IEEE Transactions on Communications, July 2013
                cs.IT math.IT

                Numerical methods,Information systems & theory
                Numerical methods, Information systems & theory

                Comments

                Comment on this article