2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Interleukin-1β Increases the Biosynthesis of the Heat Shock Protein hsp70 and Selectively Decreases the Biosynthesis of five Proteins in rat Pancreatic Islets

      , , , , ,
      Autoimmunity
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans.

          Activated mononuclear cells appear to be important effector cells in autoimmune beta cell destruction leading to insulin-dependent (type 1) diabetes mellitus. Conditioned medium from activated mononuclear cells (from human blood) is cytotoxic to isolated rat and human islets of Langerhans. This cytotoxic activity was eliminated from crude cytokine preparations by adsorption with immobilized, purified antibody to interleukin-1 (IL-1). The islet-inhibitory activity and the IL-1 activity (determined by its comitogenic effect on thymocytes) were recovered by acid wash. Purified natural IL-1 and recombinant IL-1 derived from the predominant pI 7 form of human IL-1, consistently inhibited the insulin response. The pI 6 and pI 5 forms of natural IL-1 were ineffective. Natural and recombinant IL-1 exhibited similar dose responses in their islet-inhibitory effect and their thymocyte-stimulatory activity. Concentrations of IL-1 that inhibited islet activity were in the picomolar range. Hence, monocyte-derived pI 7 IL-1 may contribute to islet cell damage and therefore to the development of insulin-dependent diabetes mellitus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins.

            Cultured rat embryo cells were stimulated to rapidly release a small group of proteins that included several heat-shock proteins (hsp110, hsp71, hscp73) and nonmuscle actin. The extracellular proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis. Heat-shocked cells released the same set of proteins as control cells with the addition of the stress-inducible hsp110 and hsp71. Release of these proteins was not blocked by either monensin or colchicine, inhibitors of the common secretory pathway. A small amount of the glucose-regulated protein grp78 was externalized by this pathway. The extracellular accumulation of these proteins was inhibited after they were synthesized in the presence of the lysine analogue aminoethyl cysteine. It is likely that the analogue-substituted proteins were misfolded and could not be released from cells, supporting our conclusion that a selective release mechanism is involved. Remarkably, actin and the squid heat-shock proteins homologous to rat hsp71 and hsp110 are also among a select group of proteins transferred from glial cells to the squid giant axon, where they have been implicated in neuronal stress responses (Tytell et al.: Brain Res., 363:161-164, 1986). Based in part on the similarities between these two sets of proteins, we hypothesized that these proteins were released from labile cortical regions of animal cells in response to perturbations of homeostasis in cells as evolutionarily distinct as cultured rat embryo cells and squid glial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              There is more than one interleukin 1.

              In 1972, Gery and co-workers(1) detected a factor that promotes murine thymocyte proliferation in culture supernatants of human peripheral blood adherent leukocytes. This factor is active across species lines, does not support the growth of interleukin 2 (IL-2)-dependent lymphocyte lines, is produced by monocytic rather than lymphocytic leukocytes, and has subsequently been termed interleukin 1 (IL- 1)(2). More recently, it has become evident that IL-1 activities can be produced by virtually every nucleated cell type and, in addition, IL-1 has been reported to have stimulatory effects on the growth and differentiation of numerous cell types. In this review, Joost Oppenheim and his colleagues discuss the biochemical characteristics, gene cloning, cell sources, biological properties and actions of IL-1, and give reasons why this pleitotropic, nonspecific hormone-like cytokine is of considerable concern to immunologists.
                Bookmark

                Author and article information

                Journal
                Autoimmunity
                Autoimmunity
                Informa UK Limited
                0891-6934
                1607-842X
                July 07 2009
                January 1991
                July 07 2009
                January 1991
                : 9
                : 1
                : 33-40
                Article
                10.3109/08916939108997121
                f0db6dd6-1a71-4720-ab30-24381a66f699
                © 1991
                History

                Comments

                Comment on this article