112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Call Off the Dog(ma): M1/M2 Polarization Is Concurrent following Traumatic Brain Injury

      research-article
      1 , 2 , 1 , 2 , 1 , 2 , 3 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following the primary mechanical impact, traumatic brain injury (TBI) induces the simultaneous production of a variety of pro- and anti-inflammatory molecular mediators. Given the variety of cell types and their requisite expression of cognate receptors this creates a highly complex inflammatory milieu. Increasingly in neurotrauma research there has been an effort to define injury-induced inflammatory responses within the context of in vitro defined macrophage polarization phenotypes, known as “M1” and “M2”. Herein, we expand upon our previous work in a rodent model of TBI to show that the categorization of inflammatory response cannot be so easily delineated using this nomenclature. Specifically, we show that TBI elicited a wide spectrum of concurrent expression responses within both pro- and anti-inflammatory arms. Moreover, we show that the cells principally responsible for the production of these inflammatory mediators, microglia/macrophages, simultaneously express both “M1” and “M2” phenotypic markers. Overall, these data align with recent reports suggesting that microglia/macrophages cannot adequately switch to a polarized “M1-only” or “M2-only” phenotype, but display a mixed phenotype due to the complex signaling events surrounding them.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          M-1/M-2 macrophages and the Th1/Th2 paradigm.

          Evidence is provided that macrophages can make M-1 or M-2 responses. The concept of M-1/M-2 fomented from observations that macrophages from prototypical Th1 strains (C57BL/6, B10D2) are more easily activated to produce NO with either IFN-gamma or LPS than macrophages from Th2 strains (BALB/c, DBA/2). In marked contrast, LPS stimulates Th2, but not Th1, macrophages to increase arginine metabolism to ornithine. Thus, M-1/M-2 does not simply describe activated or unactivated macrophages, but cells expressing distinct metabolic programs. Because NO inhibits cell division, while ornithine can stimulate cell division (via polyamines), these results also indicate that M-1 and M-2 responses can influence inflammatory reactions in opposite ways. Macrophage TGF-beta1, which inhibits inducible NO synthase and stimulates arginase, appears to play an important role in regulating the balance between M-1 and M-2. M-1/M-2 phenotypes are independent of T or B lymphocytes because C57BL/6 and BALB/c NUDE or SCID macrophages also exhibit M-1/M-2. Indeed, M-1/M-2 proclivities are magnified in NUDE and SCID mice. Finally, C57BL/6 SCID macrophages cause CB6F1 lymphocytes to increase IFN-gamma production, while BALB/c SCID macrophages increase TGF-beta production. Together, the results indicate that M-1- or M-2-dominant macrophage responses can influence whether Th1/Th2 or other types of inflammatory responses occur.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences.

            Recent studies have described the development of distinct functional subsets of macrophages in association with cancer, autoimmune disease, and chronic infections. Based on the ability of Th1 vs Th2 cytokines to promote opposing activities in macrophages, it has been proposed that macrophages develop into either type 1 inflammatory or type 2 anti-inflammatory subsets. As an alternative to the concept of subset development, we propose that macrophages, in response to changes in their tissue environment, can reversibly and progressively change the pattern of functions that they express. As demonstrated herein, macrophages can reversibly shift their functional phenotype through a multitude of patterns in response to changes in cytokine environment. Macrophages display distinct functional patterns after treatment with IFN-gamma, IL-12, IL-4, or IL-10 and additional functional patterns are displayed depending on whether the cytokine is present alone or with other cytokines and whether the cytokines are added before or concomitantly with the activating stimulus (LPS). Sequential treatment of macrophages with multiple cytokines results in a progression through multiple functional phenotypes. This ability to adapt to changing cytokine environments has significant in vivo relevance, as evidenced by the demonstration that macrophage functional phenotypes established in vivo in aged or tumor-bearing mice can be altered by changing their microenvironment. A concept of functional adaptivity is proposed that has important implications for therapeutic targeting of macrophages in chronic diseases that result in the dominance of particular functional phenotypes of macrophages that play a significant role in disease pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus.

              Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                25 January 2016
                2016
                : 11
                : 1
                : e0148001
                Affiliations
                [1 ]Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, United States of America
                [2 ]Departments of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, United States of America
                [3 ]Neurological Surgery, University of California San Francisco, San Francisco, CA, United States of America
                University of South Florida, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JM SR. Performed the experiments: JM LKR. Analyzed the data: JM SR. Wrote the paper: JM SR.

                Article
                PONE-D-15-54404
                10.1371/journal.pone.0148001
                4726527
                26808663
                f0f16ba4-a0a9-4928-ab61-8db90f099c63
                © 2016 Morganti et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 December 2015
                : 11 January 2016
                Page count
                Figures: 4, Tables: 0, Pages: 13
                Funding
                Funded by National Institute Of Neurological Disorders And Stroke and National Institute on Aging of the National Institutes of Health under award numbers F32NS090805 (J.M.M.), R21NS087458 (S.R.); R21AG042016 (S.R.).
                Categories
                Research Article
                Medicine and Health Sciences
                Neurology
                Brain Damage
                Medicine and Health Sciences
                Critical Care and Emergency Medicine
                Trauma Medicine
                Brain Damage
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Glial Cells
                Microglial Cells
                Medicine and Health Sciences
                Inflammatory Diseases
                Medicine and Health Sciences
                Neurology
                Spinal Cord Injury
                Medicine and Health Sciences
                Critical Care and Emergency Medicine
                Trauma Medicine
                Traumatic Injury
                Spinal Cord Injury
                Biology and Life Sciences
                Genetics
                Phenotypes
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article