55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Granulin-Like Growth Factor Secreted by the Carcinogenic Liver Fluke, Opisthorchis viverrini, Promotes Proliferation of Host Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human liver fluke, Opisthorchis viverrini, infects millions of people throughout south-east Asia and is a major cause of cholangiocarcinoma, or cancer of the bile ducts. The mechanisms by which chronic infection with O. viverrini results in cholangiocarcinogenesis are multi-factorial, but one such mechanism is the secretion of parasite proteins with mitogenic properties into the bile ducts, driving cell proliferation and creating a tumorigenic environment. Using a proteomic approach, we identified a homologue of human granulin, a potent growth factor involved in cell proliferation and wound healing, in the excretory/secretory (ES) products of the parasite. O. viverrini granulin, termed Ov-GRN-1, was expressed in most parasite tissues, particularly the gut and tegument. Furthermore, Ov-GRN-1 was detected in situ on the surface of biliary epithelial cells of hamsters experimentally infected with O. viverrini. Recombinant Ov-GRN-1 was expressed in E. coli and refolded from inclusion bodies. Refolded protein stimulated proliferation of murine fibroblasts at nanomolar concentrations, and proliferation was inhibited by the MAPK kinase inhibitor, U0126. Antibodies raised to recombinant Ov-GRN-1 inhibited the ability of O. viverrini ES products to induce proliferation of murine fibroblasts and a human cholangiocarcinoma cell line in vitro, indicating that Ov-GRN-1 is the major growth factor present in O. viverrini ES products. This is the first report of a secreted growth factor from a parasitic worm that induces proliferation of host cells, and supports a role for this fluke protein in establishment of a tumorigenic environment that may ultimately manifest as cholangiocarcinoma.

          Author Summary

          The oriental liver fluke is endemic through South-East Asia and is the major cause of cause of liver cancer in north-eastern Thailand. The molecules that are secreted by the parasite cause cells to multiply quicker than they normally would, and excessive cell growth is a key stage in the initiation of many cancers. We identified a secreted protein from the fluke, termed granulin, which has a similar structure to a human growth factor associated with many aggressive cancers. Granulin is secreted by the parasite into the bile ducts where it causes host cells to proliferate. The proliferative activity of fluke secreted proteins was blocked by antibodies against granulin, indicating that it is the major cell growth-inducing molecule released by the parasite. Identifying the function of granulin will enable us to understand how and why this debilitating yet neglected pathogen causes cancer in so many people in South-East Asia. This and future work will contribute towards the development of new strategies to reduce both parasite prevalence and the incidence of the most fatal of liver cancers in Thailand.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity.

          Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progranulin is a mediator of the wound response.

            Annually, 1.25 million individuals suffer burns in the United States and 6.5 million experience chronic skin ulcers, often from diabetes, pressure or venous stasis. Growth factors are essential mediators of wound repair, but their success as therapeutics in wound treatment has, so far, been limited. Therefore, there is a need to identify new wound-response regulatory factors, but few have appeared in recent years. Progranulin (also called granulin or epithelin precursor, acrogranin or PC-derived growth factor) is a growth factor involved in tumorigenesis and development. Peptides derived from progranulin have been isolated from inflammatory cells, which led to suggestions that progranulin gene products are involved in the wound response, but this remains undemonstrated. We report that in murine transcutaneous puncture wounds, progranulin mRNA is expressed in the inflammatory infiltrate and is highly induced in dermal fibroblasts and endothelia following injury. When applied to a cutaneous wound, progranulin increased the accumulation of neutrophils, macrophages, blood vessels and fibroblasts in the wound. It acts directly on isolated dermal fibroblasts and endothelial cells to promote division, migration and the formation of capillary-like tubule structures. Progranulin is, therefore, a probable wound-related growth factor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis.

              Progranulin (Pgrn) is a pluripotent secreted growth factor that mediates cell cycle progression and cell motility. It activates the extracellular regulated kinases and phosphatidyl inositol-3 kinase signal cascades, among others, and increases expression of cyclins D and B. Structurally, it belongs to none of the well-established growth factor families. It regulates developmental events as diverse as the onset of cavitation in the preimplantation embryo and male-specific brain differentiation. During wound repair it promotes granulation and neovascularization. It regulates inflammation through a tripartite loop with secretory leukocyte protease inhibitor (SLPI) which protects pgrn from proteolysis, and elastase, which digests it to smaller peptides. Intact pgrn is anti-inflammatory through the inhibition of some of the actions of tumor necrosis factor, while the proteolytic peptides may stimulate the production of proinflammatory cytokines such as interleukin 8. Pgrn is highly expressed in aggressive cancer cell lines and clinical specimens including breast, ovarian, and renal cancers as well as gliomas. In experimental systems it confers an aggressive phenotype on poorly tumorigenic epithelial cancer cells. The malignancy of highly tumorigenic progranulin-expressing cell lines depends on the expression level of the pgrn gene since attenuating pgrn mRNA levels in pgrn-responsive cells greatly inhibits tumor progression. Given its actions in wound repair and tumorigenesis pgrn may prove a useful clinical target, both for prognosis and for therapy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2009
                October 2009
                9 October 2009
                : 5
                : 10
                : e1000611
                Affiliations
                [1 ]Division of Infectious Diseases, Queensland Institute of Medical Research, Queensland, Australia, and School of Population Health, The University of Queensland, Queensland, Australia
                [2 ]Department of Parasitology, Khon Kaen University, Khon Kaen, Thailand
                [3 ]Department of Pathology, Khon Kaen University, Khon Kaen, Thailand
                [4 ]Institute for Molecular Biosciences, The University of Queensland, Queensland, Australia
                [5 ]Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D. C., United States of America
                University of Pennsylvania, United States of America
                Author notes

                Conceived and designed the experiments: MJS JM AL. Performed the experiments: MJS JM AJ. Analyzed the data: MJS AJ AL. Contributed reagents/materials/analysis tools: TL BS SS PJB AL. Wrote the paper: MJS AL.

                Article
                09-PLPA-RA-0586R2
                10.1371/journal.ppat.1000611
                2749447
                19816559
                f1200ded-ea8a-46f2-a4cb-49829740d99c
                Smout et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 April 2009
                : 10 September 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Infectious Diseases/Helminth Infections
                Microbiology/Parasitology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article