28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture

      , ,
      Journal of Pest Science
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Biodiversity inhibits parasites: Broad evidence for the dilution effect.

          Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrated pest management: historical perspectives and contemporary developments.

            M Kogan (1998)
            Twenty five years after its first enunciation, IPM is recognized as one of the most robust constructs to arise in the agricultural sciences during the second half of the twentieth century. The history of IPM, however, can be traced back to the late 1800s when ecology was identified as the foundation for scientific plant protection. That history, since the advent of modern organosynthetic pesticides, acquired elements of drama, intrigue, jealousy, and controversy that mark the path of many great scientific or technological achievements. Evolution of IPM followed multiple paths in several countries and reached beyond the confines of entomological sciences. Time and space constraints, however, bias this review toward entomology, among the plant protection sciences, and give it an obvious US slant, despite the global impact of IPM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage.

              Many insect groups depend on ancient obligate symbioses with bacteria that undergo long-term genomic degradation due to inactivation and loss of ancestral genes. Sap-feeding insects in the hemipteran suborder Auchenorrhyncha show complex symbioses with at least two obligate bacterial symbionts, inhabiting specialized host cells (bacteriocytes). We explored the symbiotic relationships of the spittlebugs (Auchenorrhyncha: Cercopoidea) using phylogenetic and microscopy methods. Results show that most spittlebugs contain the symbionts Sulcia muelleri (Bacteroidetes) and Zinderia insecticola (Betaproteobacteria) with each restricted to its own bacteriocyte type. However, the ancestral Zinderia symbiont has been replaced with a novel symbiont closely related to Sodalis glossinidius (Enterobacteriaceae) in members of the ecologically successful spittlebug tribe Philaenini. At least one spittlebug species retains Sulcia and Zinderia, but also has acquired a Sodalis-like symbiont, possibly representing a transitional stage in the evolutionary succession of symbioses. Phylogenetic analyses including symbionts of other Auchenorrhyncha lineages suggest that Zinderia, like Sulcia, descends from an ancestral symbiont present in the common ancestor of Auchenorrhyncha. This betaproteobacterial symbiont has been repeatedly replaced by other symbionts, such as the Sodalis-like symbiont of spittlebugs. Symbiont replacement may offer a route for hosts to escape dependence on an ancient, degraded and potentially inefficient symbiont. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
                Bookmark

                Author and article information

                Journal
                Journal of Pest Science
                J Pest Sci
                Springer Nature
                1612-4758
                1612-4766
                June 2018
                March 15 2018
                June 2018
                : 91
                : 3
                : 957-972
                Article
                10.1007/s10340-018-0966-0
                f1364910-23d7-4f34-986a-6326abad70f2
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article