7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Uptake and protective effects of ergothioneine in human endothelial cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ergothioneine is a thiourea derivative of histidine found in food, especially mushrooms. Experiments in cell-free systems and chemical assays identified this compound as a powerful antioxidant. Experiments were designed to test the ability of endothelial cells to take up ergothioneine and hence benefit from protection against oxidative stress. Reverse-transcription polymerase chain reaction and Western blotting demonstrated transcription and translation of an ergothioneine transporter in human brain microvascular endothelial cells (HBMECs). Uptake of [(3)H]ergothioneine occurred by the organic cation transporter novel type-1 (OCTN-1), was sodium-dependent, and was reduced when expression of OCTN-1 was silenced by small interfering RNA (siRNA). The effect of ergothioneine on the production of reactive oxygen species (ROS) in HBMECs was measured using dichlorodihydrofluorescein and lucigenin, and the effect on cell viability was studied using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. ROS production and cell death induced by pyrogallol, xanthine oxidase plus xanthine, and high glucose were suppressed by ergothioneine. The antioxidant and cytoprotective effects of ergothioneine were abolished when OCTN-1 was silenced using siRNA. The expression of NADPH oxidase 1 was decreased, and those of glutathione reductase, catalase, and superoxide dismutase enhanced by the compound. In isolated rat basilar arteries, ergothioneine attenuated the reduction in acetylcholine-induced relaxation caused by pyrogallol, xanthine oxidase plus xanthine, or incubation in high glucose. Chronic treatment with the compound improved the response to acetylcholine in arteries of rats with streptozotocin-induced diabetes. In summary, ergothioneine is taken up by endothelial cells via OCTN-1, where the compound then protects against oxidative stress, curtailing endothelial dysfunction.

          Related collections

          Author and article information

          Journal
          J. Pharmacol. Exp. Ther.
          The Journal of pharmacology and experimental therapeutics
          American Society for Pharmacology & Experimental Therapeutics (ASPET)
          1521-0103
          0022-3565
          Sep 2014
          : 350
          : 3
          Affiliations
          [1 ] State Key Laboratory for Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong (R.W.S.L., A.S.M.S., P.M.V., G.P.H.L.); Ethnic Drug Screening and Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China (C.Y.); School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (Y.W.K.); Institute of Chinese Medical Sciences, University of Macau, Macao, China (S.M.Y.L., M.P.M.H.); State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong (S.W.C.); and Entia Biosciences Inc., Sherwood, Oregon (M.H.).
          [2 ] State Key Laboratory for Pharmaceutical Biotechnologies and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong (R.W.S.L., A.S.M.S., P.M.V., G.P.H.L.); Ethnic Drug Screening and Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China (C.Y.); School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (Y.W.K.); Institute of Chinese Medical Sciences, University of Macau, Macao, China (S.M.Y.L., M.P.M.H.); State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong (S.W.C.); and Entia Biosciences Inc., Sherwood, Oregon (M.H.) gphleung@hku.hk.
          Article
          jpet.114.214049
          10.1124/jpet.114.214049
          25022513
          f13d5918-d76d-4d97-a075-fe3739550c61
          History

          Comments

          Comment on this article