37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular MicroRNA Let-7a Suppresses KSHV Replication through Targeting MAP4K4 Signaling Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is the etiologic agent of KS, the most common AIDS-related malignancy. The majority of KS tumor cells harbor latent KSHV virus but only a small percentage undergoes spontaneous lytic replication. Viral reactivation from latency is crucial for the pathogenesis and development of KS, but the cellular mechanisms underlying the switch between viral latency and replication are not well understood.

          Methods

          The level of let-7 miRNAs and MAP4K4 in KSHV infected 293T cells were quantified by real-time PCRs. Let-7 expression was silenced by the miRNA sponge technique. In let-7a transfected 293T cells, the expression of MAP4K4 was measured by real-time PCR and western blot. Luciferease expression was employed to examine the effect of let-7a on the 3’-untranslated region (UTR) of the MAP4K4 gene in 293T cells. Real-time PCR was used to quantify the KSHV copy numbers in BC-3 cells in which the expression of let-7a and/or MAP4K4 were altered. Finally, ERK, JNK and p38 protein production and their phosphorylation status were detected by western blots in let-7a or MAP4K4 transfected BCBL-1 cells.

          Results

          The expression of microRNA let-7 was dramatically decreased in KSHV infected 293T cells, but that of MAP4K4 was increased significantly. Let-7a is physically associated with and targets the MAP4K4 3’UTR, and inhibits MAP4K4 expression at both mRNA and protein levels. MAP4K4 stimulates KSHV reactivation from latency, whereas let-7a inhibits the function of MAP4K4 by reversing the function of MAP4K4 on JNK, phospho-JNK and phospho-ERK1/2 levels.

          Conclusion

          Our results establish that let-7a specifically suppresses MAP4K4 expression, and further inhibits KSHV reactivation by interfering with the function of MAP4K4 on the MAPK pathway, highlighting let-7a as a potential treatment for KS.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of mammalian microRNA targets.

          MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.

            Representational difference analysis was used to isolate unique sequences present in more than 90 percent of Kaposi's sarcoma (KS) tissues obtained from patients with acquired immunodeficiency syndrome (AIDS). These sequences were not present in tissue DNA from non-AIDS patients, but were present in 15 percent of non-KS tissue DNA samples from AIDS patients. The sequences are homologous to, but distinct from, capsid and tegument protein genes of the Gammaherpesvirinae, herpesvirus saimiri and Epstein-Barr virus. These KS-associated herpesvirus-like (KSHV) sequences appear to define a new human herpesvirus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DIANA-microT web server: elucidating microRNA functions through target prediction

              Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                21 July 2015
                2015
                : 10
                : 7
                : e0132148
                Affiliations
                [001]School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
                University of Southern California Keck School of Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XT XW LY LX. Performed the experiments: XT YG YN XW FL YC JZ CD. Analyzed the data: Y. Hong HM LX TL YW XX. Contributed reagents/materials/analysis tools: LX FL Y. Hu. Wrote the paper: LY YY.

                Article
                PONE-D-14-31916
                10.1371/journal.pone.0132148
                4511191
                26197270
                f179a0b0-0d58-48e4-aba5-e3f373d9034c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 21 July 2014
                : 10 June 2015
                Page count
                Figures: 5, Tables: 1, Pages: 14
                Funding
                This work was supported by grants from the Natural Science Foundation of China (81071636, 81161120420), the International Cooperation Project of Zhe-Jiang Province (2009C14014), the Natural Science Foundation of Zhejiang Province (LY12H16028), and the Program for Zhejiang Leading Team of Science and Technology Innovation (2011R50021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article