29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Carbohydrates for training and competition.

          An athlete's carbohydrate intake can be judged by whether total daily intake and the timing of consumption in relation to exercise maintain adequate carbohydrate substrate for the muscle and central nervous system ("high carbohydrate availability") or whether carbohydrate fuel sources are limiting for the daily exercise programme ("low carbohydrate availability"). Carbohydrate availability is increased by consuming carbohydrate in the hours or days prior to the session, intake during exercise, and refuelling during recovery between sessions. This is important for the competition setting or for high-intensity training where optimal performance is desired. Carbohydrate intake during exercise should be scaled according to the characteristics of the event. During sustained high-intensity sports lasting ~1 h, small amounts of carbohydrate, including even mouth-rinsing, enhance performance via central nervous system effects. While 30-60 g · h(-1) is an appropriate target for sports of longer duration, events >2.5 h may benefit from higher intakes of up to 90 g · h(-1). Products containing special blends of different carbohydrates may maximize absorption of carbohydrate at such high rates. In real life, athletes undertake training sessions with varying carbohydrate availability. Whether implementing additional "train-low" strategies to increase the training adaptation leads to enhanced performance in well-trained individuals is unclear.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women.

            To investigate the dependence of LH pulsatility on energy availability (dietary energy intake minus exercise energy expenditure), we measured LH pulsatility after manipulating the energy availability of 29 regularly menstruating, habitually sedentary, young women of normal body composition for 5 d in the early follicular phase. Subjects expended 15 kcal/kg of lean body mass (LBM) per day in supervised exercise at 70% of aerobic capacity while consuming a clinical dietary product to set energy availability at 45 and either 10, 20, or 30 kcal/kg LBM.d in two randomized trials separated by at least 2 months. Blood was sampled daily during treatments and at 10-min intervals for the next 24 h. Samples were assayed for LH, FSH, estradiol (E2), glucose, beta-hydroxybutyrate, insulin, cortisol, GH, IGF-I, IGF-I binding protein (IGFBP)-1, IGFBP-3, leptin, and T3. LH pulsatility was unaffected by an energy availability of 30 kcal/kg LBM.d (P > 0.3), but below this threshold LH pulse frequency decreased, whereas LH pulse amplitude increased (all P < 0.04). This disruption was more extreme in women with short luteal phases (P < 0.01). These incremental effects most closely resembled the effects of energy availability on plasma glucose, beta-hydroxybutyrate, GH, and cortisol and contrasted with the dependencies displayed by the other metabolic hormones (simultaneously P < 0.05). These results demonstrate that LH pulsatility is disrupted only below a threshold of energy availability deep into negative energy balance and suggest priorities for future investigations into the mechanism that mediates the nonlinear dependence of LH pulsatility on energy availability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy availability in athletes.

              This review updates and complements the review of energy balance and body composition in the Proceedings of the 2003 IOC Consensus Conference on Sports Nutrition. It argues that the concept of energy availability is more useful than the concept of energy balance for managing the diets of athletes. It then summarizes recent reports of the existence, aetiologies, and clinical consequences of low energy availability in athletes. This is followed by a review of recent research on the failure of appetite to increase ad libitum energy intake in compensation for exercise energy expenditure. The review closes by summarizing the implications of this research for managing the diets of athletes.
                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Med
                Springer Nature
                0112-1642
                1179-2035
                January 2018
                October 5 2017
                January 2018
                : 48
                : 1
                : 73-96
                Article
                10.1007/s40279-017-0790-3
                28983802
                f1b9a0a1-7c55-412b-b3c5-c179b75479a3
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article