13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Weibull-like Model of Cancer Development in Aging

      research-article
      ,
      Cancer Informatics
      Libertas Academica
      cancer, aging, cancer hazard, Weibull distribution

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mathematical modeling of cancer development is aimed at assessing the risk factors leading to cancer. Aging is a common risk factor for all adult cancers. The risk of getting cancer in aging is presented by a hazard function that can be estimated from the observed incidence rates collected in cancer registries. Recent analyses of the SEER database show that the cancer hazard function initially increases with the age, and then it turns over and falls at the end of the lifetime. Such behavior of the hazard function is poorly modeled by the exponential or compound exponential-linear functions mainly utilized for the modeling. In this work, for mathematical modeling of cancer hazards, we proposed to use the Weibull-like function, derived from the Armitage-Doll multistage concept of carcinogenesis and an assumption that number of clones at age t developed from mutated cells follows the Poisson distribution. This function is characterized by three parameters, two of which ( r and λ) are the conventional parameters of the Weibull probability distribution function, and an additional parameter ( C 0) that adjusts the model to the observational data. Biological meanings of these parameters are: r—the number of stages in carcinogenesis, λ—an average number of clones developed from the mutated cells during the first year of carcinogenesis, and C 0—a data adjustment parameter that characterizes a fraction of the age-specific population that will get this cancer in their lifetime. To test the validity of the proposed model, the nonlinear regression analysis was performed for the lung cancer (LC) data, collected in the SEER 9 database for white men and women during 1975–2004. Obtained results suggest that: (i) modeling can be improved by the use of another parameter A- the age at the beginning of carcinogenesis; and (ii) in white men and women, the processes of LC carcinogenesis vary by A and C 0, while the corresponding values of r and λ are nearly the same. Overall, the proposed Weibull-like model provides an excellent fit of the estimates of the LC hazard function in aging. It is expected that the Weibull-like model can be applicable to fit estimates of hazard functions of other adult cancers as well.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2006.

          Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,399,790 new cancer cases and 564,830 deaths from cancer are expected in the United States in 2006. When deaths are aggregated by age, cancer has surpassed heart disease as the leading cause of death for those younger than age 85 since 1999. Delay-adjusted cancer incidence rates stabilized in men from 1995 through 2002, but continued to increase by 0.3% per year from 1987 through 2002 in women. Between 2002 and 2003, the actual number of recorded cancer deaths decreased by 778 in men, but increased by 409 in women, resulting in a net decrease of 369, the first decrease in the total number of cancer deaths since national mortality record keeping was instituted in 1930. The death rate from all cancers combined has decreased by 1.5% per year since 1993 among men and by 0.8% per year since 1992 among women. The mortality rate has also continued to decrease for the three most common cancer sites in men (lung and bronchus, colon and rectum, and prostate) and for breast and colon and rectum cancers in women. Lung cancer mortality among women continues to increase slightly. In analyses by race and ethnicity, African American men and women have 40% and 18% higher death rates from all cancers combined than White men and women, respectively. Cancer incidence and death rates are lower in other racial and ethnic groups than in Whites and African Americans for all sites combined and for the four major cancer sites. However, these groups generally have higher rates for stomach, liver, and cervical cancers than Whites. Furthermore, minority populations are more likely to be diagnosed with advanced stage disease than are Whites. Progress in reducing the burden of suffering and death from cancer can be accelerated by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Models for temporal variation in cancer rates. I: Age-period and age-cohort models.

            A main concern of descriptive epidemiologists is the presentation and interpretation of temporal variations in cancer rates. In its simplest form, this problem is that of the analysis of a set of rates arranged in a two-way table by age group and calendar period. We review the modern approach to the analysis of such data which justifies traditional methods of age standardization in terms of the multiplicative risk model. We discuss the use of this model when the temporal variations are due to purely secular (period) influences and when they are attributable to generational (cohort) influences. Finally we demonstrate the serious difficulties which attend the interpretation of regular trends. The methods described are illustrated by examples for incidence rates of bladder cancer in Birmingham, U.K., mortality from bladder cancer in Italy, and mortality from lung cancer in Belgium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multistage carcinogenesis and the incidence of colorectal cancer.

              We use general multistage models to fit the age-specific incidence of colorectal cancers in the Surveillance, Epidemiology, and End Results registry, which covers approximately 10% of the U.S. population, while simultaneously adjusting for birth cohort and calendar year effects. The incidence of colorectal cancers in the Surveillance, Epidemiology, and End Results registry is most consistent with a model positing two rare events followed by a high-frequency event in the conversion of a normal stem cell into an initiated cell that expands clonally to give rise to an adenomatous polyp. Only one more rare event appears to be necessary for malignant transformation. The two rare events involved in initiation are interpreted to represent the homozygous loss of adenomatous polyposis coli gene function. The subsequent transition of a preinitiated stem cell into an initiated cell capable of clonal expansion via symmetric division is predicted to occur with a frequency too high for a mutational event but may reflect a positional effect in colonic crypts. Our results suggest it is not necessary to invoke genomic instability to explain colorectal cancer incidence rates in human populations. Temporal trends in the incidence of colon cancer appear to be dominated by calendar year effects. The model also predicts that interventions, such as administration of nonsteroidal anti-inflammatory drugs, designed to decrease the growth rate of adenomatous polyps, are very efficient at lowering colon cancer risk substantially, even when begun later in life. By contrast, interventions that decrease the rate of mutations at the adenomatous polyposis coli locus are much less effective in reducing the risk of colon cancer.
                Bookmark

                Author and article information

                Journal
                Cancer Inform
                101258149
                Cancer Informatics
                Libertas Academica
                1176-9351
                24 August 2010
                2010
                : 9
                : 179-188
                Affiliations
                Eppley Cancer Institute, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805
                Author notes
                Corresponding author email: ssherm@ 123456unmc.edu
                Article
                cin-2010-179
                2935819
                20838610
                f1ef251f-4bfc-47e9-add5-fda8d50846df
                © 2010 the author(s), publisher and licensee Libertas Academica Ltd.

                This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                cancer hazard,aging,cancer,weibull distribution
                Oncology & Radiotherapy
                cancer hazard, aging, cancer, weibull distribution

                Comments

                Comment on this article