11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dehydroabietic Acid Isolated from Commiphora opobalsamum Causes Endothelium-Dependent Relaxation of Pulmonary Artery via PI3K/Akt-eNOS Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Commiphora opobalsamum is a Traditional Chinese Medicine used to treat traumatic injury, mainly by relaxing blood vessels. In this study, two diterpenes, dehydroabietic acid ( DA) and sandaracopimaric acid ( SA) were obtained from it by a bioassay-guided approach using isolated rat pulmonary artery rings. The structures of the two compounds were elucidated by spectroscopic methods (IR, 1H- and 13C-NMR, HR-ESI-MS). Both DA and SA reduced the contraction of phenylephrine-induced pulmonary arteries in a concentration-dependent manner, and endothelium contributed greatly to the vasodilatory effect of DA. This effect of DA was attenuated by N G-Nitro-L-arginine methyl ester (L-NAME, an eNOS inhibitor). Meanwhile, DA increased nitric oxide (NO) production, along with the increase of phosphorylation level of eNOS and Akt in endothelial cells. LY294002 (a PI3K inhibitor) could reverse this effect, which suggested the endothelial PI3K/Akt pathway involved in the mechanism underlying DA-induced relaxation of pulmonary artery. This work provided evidence of vasorelaxant substances in Commiphora opobalsamum and validated that PI3K/Akt-eNOS pathway was associated with DA-induced pulmonary artery vasodilation.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL).

          Factors that determine survival in pulmonary arterial hypertension (PAH) drive clinical management. A quantitative survival prediction tool has not been established for research or clinical use. Data from 2716 patients with PAH enrolled consecutively in the US Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL) were analyzed to assess predictors of 1-year survival. We identified independent prognosticators of survival and derived a multivariable, weighted risk formula for clinical use. One-year survival from the date of enrollment was 91.0% (95% confidence interval [CI], 89.9 to 92.1). In a multivariable analysis with Cox proportional hazards, variables independently associated with increased mortality included pulmonary vascular resistance >32 Wood units (hazard ratio [HR], 4.1; 95% CI, 2.0 to 8.3), PAH associated with portal hypertension (HR, 3.6; 95% CI, 2.4 to 5.4), modified New York Heart Association/World Health Organization functional class IV (HR, 3.1; 95% CI, 2.2 to 4.4), men >60 years of age (HR, 2.2; 95% CI, 1.6 to 3.0), and family history of PAH (HR, 2.2; 95% CI, 1.2 to 4.0). Renal insufficiency, PAH associated with connective tissue disease, functional class III, mean right atrial pressure, resting systolic blood pressure and heart rate, 6-minute walk distance, brain natriuretic peptide, percent predicted carbon monoxide diffusing capacity, and pericardial effusion on echocardiogram all predicted mortality. Based on these multivariable analyses, a prognostic equation was derived and validated by bootstrapping technique. We identified key predictors of survival based on the patient's most recent evaluation and formulated a contemporary prognostic equation. Use of this tool may allow the individualization and optimization of therapeutic strategies. Serial follow-up and reassessment are warranted. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00370214.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pulmonary arterial hypertension

            Pulmonary arterial hypertension (PAH) is a chronic and progressive disease leading to right heart failure and ultimately death if untreated. The first classification of PH was proposed in 1973. In 2008, the fourth World Symposium on PH held in Dana Point (California, USA) revised previous classifications. Currently, PH is devided into five subgroups. Group 1 includes patients suffering from idiopathic or familial PAH with or without germline mutations. Patients with a diagnosis of PAH should systematically been screened regarding to underlying mutations of BMPR2 gene (bone morphogenetic protein receptor type 2) or more rarely of ACVRL1 (activine receptor-like kinase type 1), ENG (endogline) or Smad8 genes. Pulmonary veno occusive disease and pulmonary capillary hemagiomatosis are individualized and designated as clinical group 1'. Group 2 'Pulmonary hypertension due to left heart diseases' is divided into three sub-groups: systolic dysfonction, diastolic dysfonction and valvular dysfonction. Group 3 'Pulmonary hypertension due to respiratory diseases' includes a heterogenous subgroup of respiratory diseases like PH due to pulmonary fibrosis, COPD, lung emphysema or interstitial lung disease for exemple. Group 4 includes chronic thromboembolic pulmonary hypertension without any distinction of proximal or distal forms. Group 5 regroup PH patients with unclear multifactorial mechanisms. Invasive hemodynamic assessment with right heart catheterization is requested to confirm the definite diagnosis of PH showing a resting mean pulmonary artery pressure (mPAP) of ≥ 25 mmHg and a normal pulmonary capillary wedge pressure (PCWP) of ≤ 15 mmHg. The assessment of PCWP may allow the distinction between pre-capillary and post-capillary PH (PCWP > 15 mmHg). Echocardiography is an important tool in the management of patients with underlying suspicion of PH. The European Society of Cardiology and the European Respiratory Society (ESC-ERS) guidelines specify its role, essentially in the screening proposing criteria for estimating the presence of PH mainly based on tricuspid regurgitation peak velocity and systolic artery pressure (sPAP). The therapy of PAH consists of non-specific drugs including oral anticoagulation and diuretics as well as PAH specific therapy. Diuretics are one of the most important treatment in the setting of PH because right heart failure leads to fluid retention, hepatic congestion, ascites and peripheral edema. Current recommendations propose oral anticoagulation aiming for targeting an International Normalized Ratio (INR) between 1.5-2.5. Target INR for patients displaying chronic thromboembolic PH is between 2–3. Better understanding in pathophysiological mechanisms of PH over the past quarter of a century has led to the development of medical therapeutics, even though no cure for PAH exists. Several specific therapeutic agents were developed for the medical management of PAH including prostanoids (epoprostenol, trepoprostenil, iloprost), endothelin receptor antagonists (bosentan, ambrisentan) and phosphodiesterase type 5 inhibitors (sildenafil, tadalafil). This review discusses the current state of art regarding to epidemiologic aspects of PH, diagnostic approaches and the current classification of PH. In addition, currently available specific PAH therapy is discussed as well as future treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescent Indicators for Imaging Nitric Oxide Production.

              The membrane-permeating indicator DAF-FM DA is transformed by intracellular esterases into the highly water-soluble dye DAF-FM, which traps NO produced by NO synthase (NOS) to yield a highly fluorescent triazole compound in cells (see schematic diagram). Monitoring with a fluorescence microscope should allow direct identification of intracellular production and location of NO.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                23 June 2014
                June 2014
                : 19
                : 6
                : 8503-8517
                Affiliations
                [1 ]College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, China; E-Mails: gaowenyan1987@ 123456126.com (W.G.); remembertry@ 123456163.com (X.D.); zhouchunlan490326@ 123456163.com (C.Z.); fyh198306@ 123456126.com (Y.F.); cgy20050101@ 123456126.com (G.C.); wymingming@ 123456163.com (Y.W.); dalingzhu2000@ 123456163.com (D.Z.)
                [2 ]Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
                [3 ]College of Pharmacy, Harbin University of Commerce, Harbin 150028, Heilongjiang, China; E-Mail: xienan2002@ 123456126.com
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: genwy12345@ 123456126.com ; Tel./Fax: +86-459-815-3201.
                Article
                molecules-19-08503
                10.3390/molecules19068503
                6271577
                24959678
                f1f1529f-9963-4fc2-b60c-c3a0cd2c52a8
                © 2014 by the authors.

                licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 12 March 2014
                : 16 June 2014
                : 17 June 2014
                Categories
                Article

                commiphora opobalsamum,dehydroabietic acid,sandaracopimaric acid,nitric oxide,vasodilation,pulmonary artery

                Comments

                Comment on this article