13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators

      , , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Single spin detection by magnetic resonance force microscopy.

          Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 micro m remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 10(12) nuclear spins for MRI-based microscopy, or 10(7) electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zeptogram-scale nanomechanical mass sensing.

            Very high frequency (VHF) nanoelectromechanical systems (NEMS) provide unprecedented sensitivity for inertial mass sensing. We demonstrate in situ measurements in real time with mass noise floor approximately 20 zg. Our best mass resolution corresponds to approximately 7 zg, equivalent to approximately 30 xenon atoms or the mass of an individual 4 kDa molecule. Detailed analysis of the ultimate sensitivity of such devices based on these experimental results indicates that NEMS can ultimately provide inertial mass sensing of individual intact, electrically neutral macromolecules with single-Dalton (1 amu) resolution.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dynamic range of nanotube- and nanowire-based electromechanical systems

                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                June 19 2006
                June 19 2006
                : 88
                : 25
                : 253101
                Article
                10.1063/1.2209211
                f2c899d0-6dd2-453f-960f-1a256137d4fa
                © 2006
                History

                Comments

                Comment on this article