Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Natural Piperine Improves Lipid Metabolic Profile of High-Fat Diet-Fed Mice by Upregulating SR-B1 and ABCG8 Transporters

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Black pepper and its pungent principle-piperine: a review of diverse physiological effects.

          Black pepper (Piper nigrum) is one of the most widely used among spices. It is valued for its distinct biting quality attributed to the alkaloid, piperine. Black pepper is used not only in human dietaries but also for a variety of other purposes such as medicinal, as a preservative, and in perfumery. Many physiological effects of black pepper, its extracts, or its major active principle, piperine, have been reported in recent decades. Dietary piperine, by favorably stimulating the digestive enzymes of pancreas, enhances the digestive capacity and significantly reduces the gastrointestinal food transit time. Piperine has been demonstrated in in vitro studies to protect against oxidative damage by inhibiting or quenching free radicals and reactive oxygen species. Black pepper or piperine treatment has also been evidenced to lower lipid peroxidation in vivo and beneficially influence cellular thiol status, antioxidant molecules and antioxidant enzymes in a number of experimental situations of oxidative stress. The most far-reaching attribute of piperine has been its inhibitory influence on enzymatic drug biotransforming reactions in the liver. It strongly inhibits hepatic and intestinal aryl hydrocarbon hydroxylase and UDP-glucuronyl transferase. Piperine has been documented to enhance the bioavailability of a number of therapeutic drugs as well as phytochemicals by this very property. Piperine's bioavailability enhancing property is also partly attributed to increased absorption as a result of its effect on the ultrastructure of intestinal brush border. Although initially there were a few controversial reports regarding its safety as a food additive, such evidence has been questionable, and later studies have established the safety of black pepper or its active principle, piperine, in several animal studies. Piperine, while it is non-genotoxic, has in fact been found to possess anti-mutagenic and anti-tumor influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pharmacology of statins.

            Statins, inhibitors of the hydroxymethylglutaryl-CoA (HMG-CoA) reductase enzyme, are molecules of fungal origin. By inhibiting a key step in the sterol biosynthetic pathway statins are powerful cholesterol lowering medications and have provided outstanding contributions to the prevention of cardiovascular disease. Their detection in mycetes traces back to close to 40 years ago: there were, originally, widely opposing views on their therapeutic potential. From then on, intensive pharmaceutical development has led to the final availability in the clinic of seven statin molecules, characterized by differences in bioavailability, lipo/hydrophilicity, cytochrome P-450 mediated metabolism and cellular transport mechanisms. These differences are reflected in their relative power (mg LDL-cholesterol reduction per mg dose) and possibly in parenchymal or muscular toxicities. The impact of the antagonism of statins on a crucial step of intermediary metabolism leads, in fact, both to a reduction of cholesterol biosynthesis as well as to additional pharmacodynamic (so called "pleiotropic") effects. In the face of an extraordinary clinical success, the emergence of some side effects, e.g. raised incidence of diabetes and cataracts as well as frequent muscular side effects, have led to increasing concern by physicians. However, also in view of the present relatively low cost of these drugs, their impact on daily therapy of vascular patients is unlikely to change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion.

              Cholesterol and other sterols exit the body primarily by secretion into bile. In patients with sitosterolemia, mutations in either of two ATP-binding cassette (ABC) half-transporters, ABCG5 or ABCG8, lead to reduced secretion of sterols into bile, implicating these transporters in this process. To elucidate the roles of ABCG5 and ABCG8 in the trafficking of sterols, we disrupted Abcg5 and Abcg8 in mice (G5G8(-/-)). The G5G8(-/-) mice had a 2- to 3-fold increase in the fractional absorption of dietary plant sterols, which was associated with an approximately 30-fold increase in plasma sitosterol. Biliary cholesterol concentrations were extremely low in the G5G8(-/-) mice when compared with wild-type animals (mean = 0.4 vs. 5.5 micromol ml) and increased only modestly with cholesterol feeding. Plasma and liver cholesterol levels were reduced by 50% in the chow-fed G5G8(-/-) mice and increased 2.4- and 18-fold, respectively, after cholesterol feeding. These data indicate that ABCG5 and ABCG8 are required for efficient secretion of cholesterol into bile and that disruption of these genes increases dramatically the responsiveness of plasma and hepatic cholesterol levels to changes in dietary cholesterol content.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Natural Products
                J. Nat. Prod.
                American Chemical Society (ACS)
                0163-3864
                1520-6025
                February 26 2021
                January 25 2021
                February 26 2021
                : 84
                : 2
                : 373-381
                Affiliations
                [1 ]Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266071, China
                Article
                10.1021/acs.jnatprod.0c01018
                33492139
                f2c90c85-89eb-4a5e-b55b-ec00d4e8a4d5
                © 2021

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article