10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Giving back to the community: microbial mechanisms of plant-soil interactions

      ,
      Functional Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Plant Growth-Promoting Bacteria: Mechanisms and Applications

          The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soil biodiversity and soil community composition determine ecosystem multifunctionality.

            Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phosphorus Uptake by Plants: From Soil to Cell

                Bookmark

                Author and article information

                Journal
                Functional Ecology
                Funct Ecol
                Wiley-Blackwell
                02698463
                July 2016
                July 2016
                : 30
                : 7
                : 1043-1052
                Article
                10.1111/1365-2435.12684
                f32c84c1-b7ae-4c7e-b62a-501fe8d82743
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article