13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Performance appraisal of Trichoderma viride based novel tablet and powder formulations for management of Fusarium wilt disease in chickpea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In developing a Trichoderma viride-based biocontrol program for Fusarium wilt disease in chickpea, the choice of the quality formulation is imperative. In the present study, two types of formulations i.e. powder for seed treatment (TvP) and tablet for direct application (TvT), employing T. viride as the biocontrol agent, were evaluated for their ability to control chickpea wilt under field conditions at three dosages i.e. recommended (RD), double of recommended (DD) and half of recommended (1/2 RD). A screening study for the antagonistic fungi strains based on volatile and non-volatile bioassays revealed that T. viride ITCC 7764 has the most potential among the five strains tested (ITCC 6889, ITCC 7204, ITCC 7764, ITCC 7847, ITCC 8276), which was then used to develop the TvP and TvT formulations. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of volatile organic compounds (VOCs) of T. viride strain confirmed the highest abundance of compositions comprising octan-3-one (13.92%), 3-octanol (10.57%), and 1-octen-3-ol (9.40%) in the most potential T. viride 7764. Further Physico-chemical characterization by standard Collaborative International Pesticides Analytical Council (CIPAC) methods revealed the optimized TvP formulation to be free flowing at pH 6.50, with a density of 0.732 g cm -3. The TvT formulation showed a pH value of 7.16 and density of 0.0017 g cm -3 for a complete disintegration time of 22.5 min. The biocontrol potential of TvP formulation was found to be superior to that of TvT formulation in terms of both seed germination and wilt incidence in chickpea under field conditions. However, both the developed formulations (TvP and TvT) expressed greater bioefficacy compared to the synthetic fungicide (Carbendazim 50% WP) and the conventional talc-based formulation. Further research should be carried out on the compatibility of the developed products with other agrochemicals of synthetic or natural origin to develop an integrated disease management (IDM) schedule in chickpea.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biological Control Agents Against Fusarium Wilt of Banana

          In the last century, the banana crop and industry experienced dramatic losses due to an epidemic of Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f.sp. cubense (Foc) race 1. An even more dramatic menace is now feared due to the spread of Foc tropical race 4. Plant genetic resistance is generally considered as the most plausible strategy for controlling effectively such a devastating disease, as occurred for the first round of FWB epidemic. Nevertheless, with at least 182 articles published since 1970, biological control represents a large body of knowledge on FWB. Remarkably, many studies deal with biological control agents (BCAs) that reached the field-testing stage and even refer to high effectiveness. Some selected BCAs have been repeatedly assayed in independent trials, suggesting their promising value. Overall under field conditions, FWB has been controlled up to 79% by using Pseudomonas spp. strains, and up to 70% by several endophytes and Trichoderma spp. strains. Lower biocontrol efficacy (42–55%) has been obtained with arbuscular mycorrhizal fungi, Bacillus spp., and non-pathogenic Fusarium strains. Studies on Streptomyces spp. have been mostly limited to in vitro conditions so far, with very few pot-experiments, and none conducted in the field. The BCAs have been applied with diverse procedures (e.g., spore suspension, organic amendments, bioformulations, etc.) and at different stages of plant development (i.e., in vitro, nursery, at transplanting, post-transplanting), but there has been no evidence for a protocol better than another. Nonetheless, new bioformulation technologies (e.g., nanotechnology, formulation of microbial consortia and/or their metabolites, etc.) and tailor-made consortia of microbial strains should be encouraged. In conclusion, the literature offers many examples of promising BCAs, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bio-encapsulation of microbial cells for targeted agricultural delivery.

            Biofertilizers, namely Rhizobium and biocontrol agents such as Pseudomonas and Trichoderma have been well established in the field of agricultural practices for many decades. Nevertheless, research is still going on in the field of inoculant production to find methods to improve advanced formulation and application in fields. Conventionally used solid and liquid formulations encompass several problems with respect to the low viability of microorganisms during storage and field application. There is also lack of knowledge regarding the best carrier in conventional formulations. Immobilization of microorganisms however improves their shelf-life and field efficacy. In this context, microencapsulation is an advanced technology which has the possibility to overcome the drawbacks of other formulations, results in extended shelf-life, and controlled microbial release from formulations enhancing their application efficacy. This review discusses different microencapsulation technologies including the production strategies and application thereof in agricultural practices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds.

              Black pepper associated bacterium BP25 was isolated from root endosphere of apparently healthy cultivar Panniyur-5 that protected black pepper against Phytophthora capsici and Radopholus similis - the major production constraints. The bacterium was characterized and mechanisms of its antagonistic action against major pathogens are elucidated. The polyphasic phenotypic analysis revealed its identity as Pseudomonas putida. Multi locus sequence typing revealed that the bacterium shared gene sequences with several other isolates representing diverse habitats. Tissue localization assays exploiting green fluorescence protein expression clearly indicated that PpBP25 endophytically colonized not only its host plant - black pepper, but also other distantly related plants such as ginger and arabidopsis. PpBP25 colonies could be enumerated from internal tissues of plants four weeks post inoculation indicated its stable establishment and persistence in the plant system. The bacterium inhibited broad range of pathogens such as Phytophthora capsici, Pythium myriotylum, Giberella moniliformis, Rhizoctonia solani, Athelia rolfsii, Colletotrichum gloeosporioides and plant parasitic nematode, Radopholus similis by its volatile substances. GC/MS based chemical profiling revealed presence of Heneicosane; Tetratetracontane; Pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl); Tetracosyl heptafluorobutyrate; 1-3-Eicosene, (E)-; 1-Heneicosanol; Octadecyl trifluoroacetate and 1-Pentadecene in PpBP25 metabolite. Dynamic head space GC/MS analysis of airborne volatiles indicated the presence of aromatic compounds such as 1-Undecene;Disulfide dimethyl; Pyrazine, methyl-Pyrazine, 2,5-dimethyl-; Isoamyl alcohol; Pyrazine, methyl-; Dimethyl trisulfide, etc. The work paved way for profiling of broad spectrum antimicrobial VOCs in endophytic PpBP25 for crop protection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                07 October 2022
                2022
                : 13
                : 990392
                Affiliations
                [1] 1 Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute , New Delhi, India
                [2] 2 Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute , New Delhi, India
                [3] 3 Division of Genetics, (ICAR)-Indian Agricultural Research Institute , New Delhi, India
                Author notes

                Edited by: Prem Lal Kashyap, Indian Institute of Wheat and Barley Research (ICAR), India

                Reviewed by: Elsherbiny A. Elsherbiny, Mansoura University, Egypt; Manoj Kumar Solanki, University of Silesia in Katowice, Poland

                *Correspondence: Anupama Singh, anupamanil2000@ 123456gmail.com

                This article was submitted to Plant Pathogen Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.990392
                9585344
                36275506
                f333cf7d-556a-4d4e-bb63-b5de8cd77f9d
                Copyright © 2022 Pradhan, Mukhopadhyay, Kumar, Kundu, Patanjali, Dutta, Kamil, Bag, Aggarwal, Bharadwaj, Singh and Singh

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 July 2022
                : 05 September 2022
                Page count
                Figures: 5, Tables: 6, Equations: 2, References: 59, Pages: 17, Words: 9707
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                trichoderma viride,vocs,tablet,seed treatment, fusarium wilt,chickpea,idm
                Plant science & Botany
                trichoderma viride, vocs, tablet, seed treatment, fusarium wilt, chickpea, idm

                Comments

                Comment on this article