23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional specialization of beta-arrestin interactions revealed by proteomic analysis.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beta-arrestins are cytosolic proteins that form complexes with seven-transmembrane receptors after agonist stimulation and phosphorylation by the G protein-coupled receptor kinases. They play an essential role in receptor desensitization and endocytosis, and they also serve as receptor-regulated signaling scaffolds and adaptors. Moreover, in the past decade, a growing list of protein-protein interactions of beta-arrestins pertinent to these functions has been documented. The discovery of several novel functions of beta-arrestins stimulated us to perform a global proteomics analysis of beta-arrestin-interacting proteins (interactome) as modulated by a model seven-transmembrane receptor, the angiotensin II type 1a receptor, in an attempt to assess the full range of functions of these versatile molecules. As determined by LC tandem MS, 71 proteins interacted with beta-arrestin 1, 164 interacted with beta-arrestin 2, and 102 interacted with both beta-arrestins. Some proteins bound only after agonist stimulation, whereas others dissociated. Bioinformatics analysis of the data indicates that proteins involved in cellular signaling, organization, and nucleic acid binding are the most highly represented in the beta-arrestin interactome. Surprisingly, both S-arrestin (visual arrestin) and X-arrestin (cone arrestin) were also found in heteromeric complex with beta-arrestins. The beta-arrestin interactors distribute not only in the cytoplasm, but also in the nucleus as well as other subcellular compartments. The binding of 16 randomly selected newly identified beta-arrestin partners was validated by coimmunoprecipitation assays in HEK293 cells. This study provides a comprehensive analysis of proteins that bind beta-arrestin isoforms and underscores their potentially broad regulatory roles in mammalian cellular physiology.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          0027-8424
          0027-8424
          Jul 17 2007
          : 104
          : 29
          Affiliations
          [1 ] Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
          Article
          0704849104
          10.1073/pnas.0704849104
          1913545
          17620599
          f345b84c-38b1-473b-8231-b53223bb6e43
          History

          Comments

          Comment on this article