25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutation analysis of the Gadd45 gene at exon 4 in atypical fibroxanthoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Atypical fibroxanthoma (AFX) histologically mimics high-grade sarcoma in the skin, although it follows a benign clinical course. AFX occurs in the sun-exposed skin and for this reason, an association with ultraviolet light has long been suspected. Bax and Gadd45 are p53 effector proteins. Bax is a programmed cell death protein and belongs to the Bcl-2 family. Gadd45 is a multifunctional DNA damage-inducible gene associated with the process of DNA damage.

          Methods

          Immunohistochemical expression of Bax was analyzed in 7 cases of AFX, and in 7 cases of benign fibrous histiocytoma (BFH) used as a comparison. The expression pattern of Bax was compared to previously reported p53 and Gadd45 expressions in a correspondent series. Mutation of the Gadd45 gene at exon 4 was also analyzed in AFX.

          Results

          AFX and BFH showed immunoreactivities respectively for Bax (3/7, 0/7), Gadd45 (4/7, 1/7) and p53 (2/7, 0/7). There was no exact correlation between p53 expression and Bax or Gadd45 expression. However, the pattern of expression between Bax and Gadd45 was also the same, with the exception of one case. No mutation of the Gadd45 gene at exon 4 was observed in a series of 6 AFX cases where DNA was available (0/6).

          Conclusion

          These results suggest a possible association between Bax and Gadd45 in AFX, and may refute any possibility of dysfunction of Gadd45 in terms of gene mutation, at least at exon 4 of the Gadd45 gene.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Bcl-2 family members in tumorigenesis.

          The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1.

            The breast cancer susceptibility gene BRCA1 encodes a protein implicated in the cellular response to DNA damage, with postulated roles in homologous recombination as well as transcriptional regulation. To identify downstream target genes, we established cell lines with tightly regulated inducible expression of BRCA1. High-density oligonucleotide arrays were used to analyze gene expression profiles at various times following BRCA1 induction. A major BRCA1 target is the DNA damage-responsive gene GADD45. Induction of BRCA1 triggers apoptosis through activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), a signaling pathway potentially linked to GADD45 gene family members. The p53-independent induction of GADD45 by BRCA1 and its activation of JNK/SAPK suggest a pathway for BRCA1-induced apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bax suppresses tumorigenesis and stimulates apoptosis in vivo.

              The protein p53 is a key tumour-suppressor, as evidenced by its frequent inactivation in human cancers. Animal models have indicated that attenuation of p53-dependent cell death (apoptosis) can contribute to both the initiation and progression of cancer, but the molecular mechanisms are unknown. Although p53-mediated transcriptional activation is one possible explanation, none of the known p53-responsive genes has been shown to function in p53-dependent apoptosis. Here we test the role of the death-promoting gene bax in a transgenic mouse brain tumour, a model in which p53-mediated apoptosis attenuates tumour growth. Inactivation of p53 causes a dramatic acceleration of tumour growth owing to a reduction in apoptosis of over ninety per cent. We show that p53-dependent expression of bax is induced in slow-growing apoptotic tumours. Moreover, tumour growth is accelerated and apoptosis drops by fifty per cent in Bax-deficient mice, indicating that it is required for a full p53-mediated response. To our knowledge this is the first demonstration that Bax acts as a tumour suppressor, and our findings indicate that Bax could be a component of the p53-mediated apoptotic response in this system.
                Bookmark

                Author and article information

                Journal
                BMC Dermatol
                BMC Dermatology
                BioMed Central
                1471-5945
                2009
                7 January 2009
                : 9
                : 1
                Affiliations
                [1 ]Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
                [2 ]Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
                Article
                1471-5945-9-1
                10.1186/1471-5945-9-1
                2628644
                19128509
                f370330f-1a19-4fc4-95bb-5b6954cb4748
                Copyright © 2009 Sakamoto et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 May 2008
                : 7 January 2009
                Categories
                Research Article

                Dermatology
                Dermatology

                Comments

                Comment on this article