+1 Recommend
1 collections

      A pioneer issue of Neuroimmunomodulation is now dedicated to “COVID-19, Hormones and Brain”. It will show an article collection on this topic from basic and clinical science, that helps to understand this fundamental aspect. The article should demonstrate crosstalk between hormones and viral infection in the context of COVID-19.

      Submit to COVID-19, Hormones and Brain

      • Record: found
      • Abstract: found
      • Article: found

      Androgens Contribute to Age-Associated Changes in Peripheral T-Cell Homeostasis Acting in a Thymus-Independent Way


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Objective: Considering a causal role of androgens in thymic involution, age-related remodeling of peripheral T-cell compartments in the absence of testicular hormones was evaluated. Methods: Rats were orchidectomized (ORX) at the age of 1 month, and T-peripheral blood lymphocytes (PBLs) and splenocytes from young (75-day-old) and aged (24-month-old) rats were examined for differentiation/activation and immunoregulatory marker expression. Results: In ORX rats, following the initial rise, the counts of CD4+ and CD8+ PBLs diminished with aging. This reflected the decline in thymic export as shown by recent thymic emigrant (RTE) enumeration. Orchidectomy increased the count of both of the major T-splenocyte subsets in young rats, and they (differently from controls) remained stable with aging. The CD4+:CD8+ T-splenocyte ratio in ORX rats shifted towards CD4+ cells compared to age-matched controls. Although in the major T-cell subsets in the blood and spleen from aged ORX rats the numbers of RTEs were comparable to the corresponding values in age-matched controls, the numbers of mature naïve and memory/activated cells substantially differed. Compared with age-matched controls, in aged ORX rats the numbers of CD4+ mature naïve PBLs and splenocytes were reduced, whereas those of CD4+ memory/activated cells (predictive of early mortality) were increased. Additionally, in spleens from aged ORX rats, despite unaltered thymic export, CD4+CD25+FoxP3+ and natural killer T cell counts were greater than in age-matched controls. Conclusion: (i) Age-related decline in thymopoietic efficacy is not dependent on androgen presence, and (ii) androgens are involved in the maintenance of peripheral T-cell (particularly CD4+ cell) homeostasis during aging.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Estrogen deficiency and bone loss: an inflammatory tale.

          Estrogen plays a fundamental role in skeletal growth and bone homeostasis in both men and women. Although remarkable progress has been made in our understanding of how estrogen deficiency causes bone loss, the mechanisms involved have proven to be complex and multifaceted. Although estrogen is established to have direct effects on bone cells, recent animal studies have identified additional unexpected regulatory effects of estrogen centered at the level of the adaptive immune response. Furthermore, a potential role for reactive oxygen species has now been identified in both humans and animals. One major challenge is the integration of a multitude of redundant pathways and cytokines, each apparently capable of playing a relevant role, into a comprehensive model of postmenopausal osteoporosis. This Review presents our current understanding of the process of estrogen deficiency-mediated bone destruction and explores some recent findings and hypotheses to explain estrogen action in bone. Due to the inherent difficulties associated with human investigation, many of the lessons learned have been in animal models. Consequently, many of these principles await further validation in humans.
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms.

            The role of transforming growth factor-beta (TGF-beta) in inhibiting T cell functions has been studied with dominant-negative TGF-beta receptor transgenic models; however, the full impact of TGF-beta signaling on T cells and the mechanisms by which TGF-beta signals remain poorly understood. Here we show that mice with T cell-specific deletion of TGF-beta receptor II developed lethal inflammation associated with T cell activation and differentiation. In addition, TGF-beta signaling positively regulated T cell development and homeostasis. Development of CD8+ T cells and NKT cells, maintenance of peripheral Foxp3-expressing regulatory T cells, and survival of CD4+ T cells all depended on TGF-beta signaling. Both T helper 1 (Th1) differentiation and survival of activated CD4+ T cells required T-bet, the TGF-beta-regulated transcription factor, which controlled CD122 expression and IL-15 signaling in Th1 cells. This study reveals pleiotropic functions of TGF-beta signaling in T cells that may ensure a diverse and self-tolerant T cell repertoire in vivo.
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor.

              Transforming growth factor-beta (TGF-beta) has been implicated in the control of differentiation and proliferation of multiple cell types. However, a role for TGF-beta in the control of immune homeostasis is not fully understood because of its pleiotropic action. Here we report that complete ablation of the TGF-beta signaling in T cells engendered aggressive early-onset, multiorgan, autoimmune-associated lesions with 100% mortality. Peripheral CD4+ and CD8+ T cells with TGF-beta-receptor II (TGF-betaRII) deficiency activated cytolytic and T helper 1 (Th1) differentiation program in a cell-intrinsic T cell receptor (TCR)-specific fashion. Furthermore, TGF-betaRII deficiency blocked the development of canonical CD1d-restricted NKT cells. Instead, it facilitated generation of a highly pathogenic T cell subset exhibiting multiple hallmarks of NK cells and sharply elevated amounts of FasL, perforin, granzymes, and interferon-gamma. Thus, TGF-beta signaling in peripheral T cells is crucial in restraining TCR activation-dependent Th1, cytotoxic, and NK cell-like differentiation program which, when left unchecked, leads to rapidly progressing fatal autoimmunity.

                Author and article information

                S. Karger AG
                February 2014
                06 February 2014
                : 21
                : 4
                : 161-182
                Departments of aMicrobiology and Immunology and bPhysiology, Faculty of Pharmacy, University of Belgrade, and cImmunology Research Center ‘Branislav Janković', Institute of Virology, Vaccines and Sera ‘Torlak', Belgrade, Serbia
                Author notes
                *Prof. Gordana Leposavić, PhD, MD, University of Belgrade, Faculty of Pharmacy, Department of Physiology, 450 Vojvode Stepe, RS-11221 Belgrade (Serbia), E-Mail Gordana.Leposavic@pharmacy.bg.ac.rs
                355349 Neuroimmunomodulation 2014;21:161-182
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 10, Tables: 3, Pages: 22
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                T regulatory cells,Aging,Androgen deprivation,Naïve CD4+ lymphocytes,Natural killer T cells ,Recent thymic emigrants


                Comment on this article