Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contrasting Diversity Patterns of Crenarchaeal, Bacterial and Fungal Soil Communities in an Alpine Landscape

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.

          Methodology/Principal Findings

          Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat-specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta-diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity.

          Conclusions/Significance

          Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS

            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            R: A language and environment for statistical computing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The diversity and biogeography of soil bacterial communities.

              For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                12 May 2011
                : 6
                : 5
                : e19950
                Affiliations
                [1 ]Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université de Grenoble, Grenoble, France
                [2 ]Station Alpine J. Fourier, CNRS-UMS 3370, Université de Grenoble, Grenoble, France
                Argonne National Laboratory, United States of America
                Author notes

                Conceived and designed the experiments: PC RAG. Performed the experiments: LZ FB. Analyzed the data: LZ PC. Contributed reagents/materials/analysis tools: SA AB. Wrote the paper: LZ DPHL FB AB SA RAG PC. Sample collection: LZ DPHL FB RAG PC. Interpreted the results: LZ DPHL FB AB SA RAG PC.

                [¤]

                Current address: Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany

                Article
                PONE-D-11-02619
                10.1371/journal.pone.0019950
                3093402
                21589876
                f43142cd-5b03-46d8-8335-3d0e452a64c8
                Zinger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 February 2011
                : 7 April 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Ecology
                Ecosystems
                Ecosystem Modeling
                Biodiversity
                Biogeography
                Ecological Metrics
                Microbial Ecology
                Plant Ecology
                Soil Ecology
                Spatial and Landscape Ecology
                Microbiology
                Mycology
                Fungi
                Microbial Ecology
                Plant Science
                Botany
                Mycology
                Fungi
                Plant Ecology
                Plant Microbiology
                Population Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article