22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation of exenatide-loaded linear poly(ethylene glycol)-brush poly(l-lysine) block copolymer: potential implications on diabetic nephropathy

      research-article
      International Journal of Nanomedicine
      Dove Medical Press
      block copolymer, PELG50-g-PLL3, exenatide, hypoglycemic action, diabetic nephropathy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The poly(ethylene glycol)- b-brush poly( l-lysine) polymer (PEG- b-(PELG 50- g-PLL 3)) was synthesized and evaluated as a nanocarrier for prolonging delivery of exenatide through the abdominal subcutaneous injection route. The isoelectric point of exenatide was 4.86, and exenatide could combine with PEG- b-(PELG 50- g-PLL 3) polymers via electrostatic interactions at pH 7.4. This polymer was a good candidate for achieving prolonged drug delivery for exenatide, considering its high molecular weight. Besides the physicochemical characterization of the polymer, in vitro and in vivo applications were researched as a sustained exenatide delivery system. In the in vitro release research, 20.16%–76.88% of total exenatide was released from the PEG- b-(PELG 50- g-PLL 3) polymer within 7 days. The synthesized block-brush polymers and exenatide–block-brush polymers were analyzed by nuclear magnetic resonance spectroscopy, gel permeation chromatography, transmission electron microscopy, nanoparticle size instrument, and scanning electron microscopy. The best formulation was selected for in vivo experimentation to achieve blood glucose control in diabetic rat models using free exenatide as the control. The hypoglycemic action of the formulation following subcutaneous injection in diabetic rats lasted 7 days, and the results indicated that exenatide–block-brush polymers demonstrate enhanced long-acting hypoglycemic action. Besides the hypoglycemic action, exenatide–block-brush polymers significantly alleviated diabetic nephropathy via improving renal function, decreasing oxidative stress injury, decreasing urinary albumin excretion rate, mitigating albumin/creatinine ratio, reducing blood lipids, abating kidney index, weakening apoptosis, and downregulating expression of connective tissue growth factor. All of the results suggested that PEG- b-(PELG 50- g-PLL 3) polymers could be used as potential exenatide nanocarriers, with efficient encapsulation and sustained release.

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling.

          The myocardium of the failing heart undergoes a number of structural alterations, most notably hypertrophy of cardiac myocytes and an increase in extracellular matrix proteins, often seen as primary fibrosis. Connective tissue growth factor (CTGF) is a key molecule in the process of fibrosis and therefore seems an attractive therapeutic target. Regulation of CTGF expression at the promoter level has been studied extensively, but it is unknown how CTGF transcripts are regulated at the posttranscriptional level. Here we provide several lines of evidence to show that CTGF is importantly regulated by 2 major cardiac microRNAs (miRNAs), miR-133 and miR-30. First, the expression of both miRNAs was inversely related to the amount of CTGF in 2 rodent models of heart disease and in human pathological left ventricular hypertrophy. Second, in cultured cardiomyocytes and fibroblasts, knockdown of these miRNAs increased CTGF levels. Third, overexpression of miR-133 or miR-30c decreased CTGF levels, which was accompanied by decreased production of collagens. Fourth, we show that CTGF is a direct target of these miRNAs, because they directly interact with the 3' untranslated region of CTGF. Taken together, our results indicate that miR-133 and miR-30 importantly limit the production of CTGF. We also provide evidence that the decrease of these 2 miRNAs in pathological left ventricular hypertrophy allows CTGF levels to increase, which contributes to collagen synthesis. In conclusion, our results show that both miR-133 and miR-30 directly downregulate CTGF, a key profibrotic protein, and thereby establish an important role for these miRNAs in the control of structural changes in the extracellular matrix of the myocardium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas.

            The recent identification in Heloderma horridum venom of exendin-3, a new member of the glucagon superfamily that acts as a pancreatic secretagogue, prompted a search for a similar peptide in Heloderma suspectum venom. An amino acid sequencing assay for peptides containing an amino-terminal histidine residue (His1) was used to isolate a 39-amino acid peptide, exendin-4, from H. suspectum venom. Exendin-4 differs from exendin-3 by two amino acid substitutions, Gly2-Glu3 in place of Ser2-Asp3, but is otherwise identical. The structural differences make exendin-4 distinct from exendin-3 in its bioactivity. In dispersed acini from guinea pig pancreas, natural and synthetic exendin-4 stimulate a monophasic increase in cAMP beginning at 100 pM that plateaus at 10 nM. The exendin-4-induced increase in cAMP is inhibited progressively by increasing concentrations of the exendin receptor antagonist, exendin-(9-39) amide. Unlike exendin-3, exendin-4 does not stimulate a second rise in acinar cAMP at concentrations greater than 100 nM, does not stimulate amylase release, and does not inhibit the binding of radiolabeled vasoactive intestinal peptide to acini. This indicates that in dispersed pancreatic acini, exendin-4 interacts only with the recently described exendin receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overcoming the Diffusion Barrier of Mucus and Absorption Barrier of Epithelium by Self-Assembled Nanoparticles for Oral Delivery of Insulin

              Nanoparticles (NPs) have demonstrated great potential for the oral delivery of protein drugs that have very limited oral bioavailability. Orally administered NPs could be absorbed by the epithelial tissue only if they successfully permeate through the mucus that covers the epithelium. However, efficient epithelial absorption and mucus permeation require very different surface properties of a nanocarrier. We herein report self-assembled NPs for efficient oral delivery of insulin by facilitating both of these two processes. The NPs possess a nanocomplex core composed of insulin and cell penetrating peptide (CPP), and a dissociable hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivatives. After systematic screening using mucus-secreting epithelial cells, NPs exhibit excellent permeation in mucus due to the "mucus-inert" pHPMA coating, as well as high epithelial absorption mediated by CPP. The investigation of NP behavior shows that the pHPMA molecules gradually dissociate from the NP surface as it permeates through mucus, and the CPP-rich core is revealed in time for subsequent transepithelial transport through the secretory endoplasmic reticulum/Golgi pathway and endocytic recycling pathway. The NPs exhibit 20-fold higher absorption than free insulin on mucus-secreting epithelium cells, and orally administered NPs generate a prominent hypoglycemic response and an increase of the serum insulin concentration in diabetic rats. Our study provides the evidence of using pHPMA as dissociable "mucus-inert" agent to enhance mucus permeation of NPs, and validates a strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and drug-loaded CPP-rich core.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                29 June 2017
                : 12
                : 4663-4678
                Affiliations
                Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
                Author notes
                Correspondence: Fei Tong, Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, No 118 Jia Hang Road, Nanhu District, Jiaxing, Zhejiang 314000, People’s Republic of China, Email tongxuchang@ 123456163.com
                Article
                ijn-12-4663
                10.2147/IJN.S136646
                5500490
                f4a1fce9-b92c-47f3-80ae-a913ca619217
                © 2017 Tong. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                block copolymer,pelg50-g-pll3,exenatide,hypoglycemic action,diabetic nephropathy

                Comments

                Comment on this article