17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrathecal Injection of Tigecycline and Polymyxin B in the Treatment of Extensively Drug-Resistant Intracranial Acinetobacter baumannii Infection: A Case Report and Review of the Literature

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Intracranial infection after neurosurgery is one of the most serious complications, especially extensively drug-resistant (XDR) Acinetobacter baumannii ( A. baumannii) seriously affects the prognosis of patients. At present, there is little experience in the treatment of this infection and limited effective treatment options, like tigecycline or polymyxin B. Therefore, this report aims to describe the efficacy of tigecycline combined with polymyxin B by intrathecal (ITH) injection in the treatment of XDR intracranial infection with A. baumannii.

          Methods

          We report a case of intracranial infection with XDR A. baumannii after ventricular drainage, treated by daily ITH and intravenous (IV) tigecycline, combined with polymyxin B ITH route. Moreover, tigecycline and polymyxin B treatments for XDR intracranial infection with A. baumannii that were reported in the literature were also reviewed and summarized.

          Results

          The white blood cells (WBCs) of the patient’s cerebrospinal fluid dropped to normal, and the symptoms of intracranial infection disappeared. The patient finally obtained good clinical results and transferred to the local hospital.

          Conclusion

          The polymyxin B ITH route is an ideal treatment strategy for XDR A. baumannii. The IV plus ITH tigecycline may be an effective treatment option. However, more researches should be conducted to confirm our observation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          International Consensus Guidelines for the Optimal Use of the Polymyxins

          The polymyxin antibiotics colistin (polymyxin E) and polymyxin B became available in the 1950s and thus did not undergo contemporary drug development procedures. Their clinical use has recently resurged, assuming an important role as salvage therapy for otherwise untreatable gram-negative infections. Since their reintroduction into the clinic, significant confusion remains due to the existence of several different conventions used to describe doses of the polymyxins, differences in their formulations, outdated product information, and uncertainties about susceptibility testing that has led to lack of clarity on how to optimally utilize and dose colistin and polymyxin B. We report consensus therapeutic guidelines for agent selection and dosing of the polymyxin antibiotics for optimal use in adult patients, as endorsed by the American College of Clinical Pharmacy (ACCP), Infectious Diseases Society of America (IDSA), International Society of Anti-Infective Pharmacology (ISAP), Society for Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). The European Society for Clinical Microbiology and Infectious Diseases (ESCMID) endorses this document as a consensus statement. The overall conclusions in the document are endorsed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). We established a diverse international expert panel to make therapeutic recommendations regarding the pharmacokinetic and pharmacodynamic properties of the drugs and pharmacokinetic targets, polymyxin agent selection, dosing, dosage adjustment and monitoring of colistin and polymyxin B, use of polymyxin-based combination therapy, intrathecal therapy, inhalation therapy, toxicity, and prevention of renal failure. The treatment guidelines provide the first ever consensus recommendations for colistin and polymyxin B therapy that are intended to guide optimal clinical use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colistin in the 21st century.

            Colistin is a 50-year-old antibiotic that is being used increasingly as a 'last-line' therapy to treat infections caused by multidrug-resistant Gram-negative bacteria, when essentially no other options are available. Despite its age, or because of its age, there has been a dearth of knowledge on its pharmacological and microbiological properties. This review focuses on recent studies aimed at optimizing the clinical use of this old antibiotic. A number of factors, including the diversity in the pharmaceutical products available, have hindered the optimal use of colistin. Recent advances in understanding of the pharmacokinetics and pharmacodynamics of colistin, and the emerging knowledge on the relationship between the pharmacokinetics and pharmacodynamics, provide a solid base for optimization of dosage regimens. The potential for nephrotoxicity has been a lingering concern, but recent studies provide useful new information on the incidence, severity and reversibility of this adverse effect. Recent approaches to the use of other antibiotics in combination with colistin hold promise for increased antibacterial efficacy with less potential for emergence of resistance. Because few, if any, new antibiotics with activity against multidrug-resistant Gram-negative bacteria will be available within the next several years, it is essential that colistin is used in ways that maximize its antibacterial efficacy and minimize toxicity and development of resistance. Recent developments have improved use of colistin in the 21st century.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches

              Introduction: In the era of multidrug-resistant, extensively drug-resistant (XDR) and even pandrug-resistant Gram-negative microorganisms, the medical community is facing the threat of untreatable infections particularly those caused by carbapenemase-producing bacteria, that is, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Therefore, all the presently available antibiotics, as well as for the near future compounds, are presented and discussed. Areas covered: Current knowledge concerning mechanisms of action, in vitro activity and interactions, pharmacokinetic/pharmacodynamics, clinical efficacy and toxicity issues for revived and novel antimicrobial agents overcoming current resistance mechanisms, including colistin, tigecycline, fosfomycin, temocillin, carbapenems, and antibiotics still under development for the near future such as plazomicin, eravacycline and carbapenemase inhibitors is discussed. Expert opinion: Colistin is active in vitro and effective in vivo against XDR carbapenemase-producing microorganisms in the critically ill host, whereas tigecycline, with the exception of P. aeruginosa, has a similar spectrum of activity. The efficacy of combination therapy in bacteremias and ventilator-associated pneumonia caused by K. pneumoniae carbapenemase producers seems to be obligatory, whereas in cases of P. aeruginosa and A. baumannii its efficacy is questionable. Fosfomycin, which is active against P. aeruginosa and K. pneumoniae, although promising, shares poor experience in XDR infections. The in vivo validity of the newer potent compounds still necessitates the evaluation of Phase III clinical trials particularly in XDR infections.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                31 March 2022
                2022
                : 15
                : 1411-1423
                Affiliations
                [1 ]Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, Guangdong, 510630, People’s Republic of China
                Author notes
                Correspondence: Huimin Yi, Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, Guangdong, 510630, People’s Republic of China, Email yhmsysu@163.com
                Article
                354460
                10.2147/IDR.S354460
                8980296
                35392365
                f5530b0f-53a6-4b91-b252-17dd20a2e5f1
                © 2022 Li et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 16 December 2021
                : 09 March 2022
                Page count
                Figures: 2, Tables: 7, References: 49, Pages: 13
                Funding
                Funded by: No funding sources;
                This work was supported by Guangdong Natural Science Foundation (2022A1515011919).
                Categories
                Case Report

                Infectious disease & Microbiology
                intracranial infection,acinetobacter baumannii,intrathecal injection of polymyxin b,tigecycline

                Comments

                Comment on this article