16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiology of Angina and Its Alleviation With Nitroglycerin : Insights From Invasive Catheter Laboratory Measurements During Exercise

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Abstract

          Background:

          The mechanisms governing exercise-induced angina and its alleviation by the most commonly used antianginal drug, nitroglycerin, are incompletely understood. The purpose of this study was to develop a method by which the effects of antianginal drugs could be evaluated invasively during physiological exercise to gain further understanding of the clinical impact of angina and nitroglycerin.

          Methods:

          Forty patients (mean age, 65.2±7.6 years) with exertional angina and coronary artery disease underwent cardiac catheterization via radial access and performed incremental exercise using a supine cycle ergometer. As they developed limiting angina, sublingual nitroglycerin was administered to half the patients, and all patients continued to exercise for 2 minutes at the same workload. Throughout exercise, distal coronary pressure and flow velocity and central aortic pressure were recorded with sensor wires.

          Results:

          Patients continued to exercise after nitroglycerin administration with less ST-segment depression ( P=0.003) and therefore myocardial ischemia. Significant reductions in afterload (aortic pressure, P=0.030) and myocardial oxygen demand were seen (tension-time index, P=0.024; rate-pressure product, P=0.046), as well as an increase in myocardial oxygen supply (Buckberg index, P=0.017). Exercise reduced peripheral arterial wave reflection ( P<0.05), which was not further augmented by the administration of nitroglycerin ( P=0.648). The observed increases in coronary pressure gradient, stenosis resistance, and flow velocity did not reach statistical significance; however, the diastolic velocity–pressure gradient relation was consistent with a significant increase in relative stenosis severity (k coefficient, P<0.0001), in keeping with exercise-induced vasoconstriction of stenosed epicardial segments and dilatation of normal segments, with trends toward reversal with nitroglycerin.

          Conclusions:

          The catheterization laboratory protocol provides a model to study myocardial ischemia and the actions of novel and established antianginal drugs. Administration of nitroglycerin causes changes in the systemic and coronary circulation that combine to reduce myocardial oxygen demand and to increase supply, thereby attenuating exercise-induced ischemia. Designing antianginal therapies that exploit these mechanisms may provide new therapeutic strategies.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.

          In patients with multivessel coronary artery disease who are undergoing percutaneous coronary intervention (PCI), coronary angiography is the standard method for guiding the placement of the stent. It is unclear whether routine measurement of fractional flow reserve (FFR; the ratio of maximal blood flow in a stenotic artery to normal maximal flow), in addition to angiography, improves outcomes. In 20 medical centers in the United States and Europe, we randomly assigned 1005 patients with multivessel coronary artery disease to undergo PCI with implantation of drug-eluting stents guided by angiography alone or guided by FFR measurements in addition to angiography. Before randomization, lesions requiring PCI were identified on the basis of their angiographic appearance. Patients assigned to angiography-guided PCI underwent stenting of all indicated lesions, whereas those assigned to FFR-guided PCI underwent stenting of indicated lesions only if the FFR was 0.80 or less. The primary end point was the rate of death, nonfatal myocardial infarction, and repeat revascularization at 1 year. The mean (+/-SD) number of indicated lesions per patient was 2.7+/-0.9 in the angiography group and 2.8+/-1.0 in the FFR group (P=0.34). The number of stents used per patient was 2.7+/-1.2 and 1.9+/-1.3, respectively (P<0.001). The 1-year event rate was 18.3% (91 patients) in the angiography group and 13.2% (67 patients) in the FFR group (P=0.02). Seventy-eight percent of the patients in the angiography group were free from angina at 1 year, as compared with 81% of patients in the FFR group (P=0.20). Routine measurement of FFR in patients with multivessel coronary artery disease who are undergoing PCI with drug-eluting stents significantly reduces the rate of the composite end point of death, nonfatal myocardial infarction, and repeat revascularization at 1 year. (ClinicalTrials.gov number, NCT00267774.) 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses.

            The clinical significance of coronary-artery stenoses of moderate severity can be difficult to determine. Myocardial fractional flow reserve (FFR) is a new index of the functional severity of coronary stenoses that is calculated from pressure measurements made during coronary arteriography. We compared this index with the results of noninvasive tests commonly used to detect myocardial ischemia, to determine the usefulness of the index. In 45 consecutive patients with moderate coronary stenosis and chest pain of uncertain origin, we performed bicycle exercise testing, thallium scintigraphy, stress echocardiography with dobutamine, and quantitative coronary arteriography and compared the results with measurements of FFR. In all 21 patients with an FFR of less than 0.75, reversible myocardial ischemia was demonstrated unequivocally on at least one noninvasive test. After coronary angioplasty or bypass surgery was performed, all the positive test results reverted to normal. In contrast, 21 of the 24 patients with an FFR of 0.75 or higher tested negative for reversible myocardial ischemia on all the noninvasive tests. No revascularization procedures were performed in these patients, and none were required during 14 months of follow-up. The sensitivity of FFR in the identification of reversible ischemia was 88 percent, the specificity 100 percent, the positive predictive value 100 percent, the negative predictive value 88 percent, and the accuracy 93 percent. In patients with coronary stenosis of moderate severity, FFR appears to be a useful index of the functional severity of the stenoses and the need for coronary revascularization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical applications of arterial stiffness; definitions and reference values.

              Arterial stiffening is the most important cause of increasing systolic and pulse pressure, and for decreasing diastolic pressure beyond 40 years of age. Stiffening affects predominantly the aorta and proximal elastic arteries, and to a lesser degree the peripheral muscular arteries. While conceptually a Windkessel model is the simplest way to visualize the cushioning function of arteries, this is not useful clinically under changing conditions when effects of wave reflection become prominent. Many measures have been applied to quantify stiffness, but all are approximations only, on account of the nonhomogeneous structure of the arterial wall, its variability in different locations, at different levels of distending pressure, and with changes in smooth muscle tone. This article summarizes the methods and indices used to estimate arterial stiffness, and provides values from a survey of the literature, followed by recommendations of an international group of workers in the field who attended the First Consensus Conference on Arterial Stiffness, which was held in Paris during 2000, under the chairmanship of M.E. Safar and E.D. Frohlich.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                CIR
                Circulation
                Lippincott Williams & Wilkins
                0009-7322
                1524-4539
                4 July 2017
                03 July 2017
                : 136
                : 1
                : 24-34
                Affiliations
                From King’s College London British Heart Foundation Centre of Excellence, Rayne Institute, St. Thomas’ Hospital, London, United Kingdom (K.N.A., R.W., T.L., M.Z.K., K.D.S., M.L., T.P., S.A., H.E., D.P., M.S.M., S.R.R.); National Institute for Health Research Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom (K.N.A., M.S.M., S.R.R.); Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (K.N.A., K.D.S.); Kolling Institute, Northern Clinical School, University of Sydney, Australia (K.N.A.); Department of Clinical Pharmacology (A.G., P.J.C.) and Division of Imaging Sciences and Biomedical Engineering, Rayne Institute (S.I., S.P.), St Thomas’ Hospital, King’s College London, London, United Kingdom; Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom (B.C.); and Division of Cardiovascular and Neuronal Remodelling, University of Leeds, United Kingdom (S.P.).
                Author notes
                Correspondence to: Kaleab N. Asrress, PhD, British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, King’s College London, Westminister Bridge Road, London SE1 7EH, UK. E-mail kaleab.asrress@ 123456sydney.edu.au
                Article
                00005
                10.1161/CIRCULATIONAHA.116.025856
                5491223
                28468975
                f5600155-706f-44ca-b8b2-bd4b2b50d878
                © 2017 The Authors.

                Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.

                History
                : 9 October 2016
                : 26 April 2017
                Categories
                10007
                10029
                10033
                10042
                10144
                Original Research Articles
                Custom metadata
                TRUE

                angina pectoris,coronary circulation,exercise,myocardial ischemia,nitroglycerin,physiology

                Comments

                Comment on this article