14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis and Single-Molecule Conductances of Neutral and Cationic Indenofluorene-Extended Tetrathiafulvalenes: Kondo Effect Molecules

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Development of molecules that can switch between redox states with paired and unpaired electrons is important for molecular electronics and spintronics. In this work, a selection of redox-active indenofluorene-extended tetrathiafulvalenes (IF-TTFs) with thioacetate end groups was prepared from a readily obtainable dibromo-functionalized IF-TTF building block using palladium-catalyzed cross-coupling reactions, such as the Suzuki reaction. The end groups served as electrode anchoring groups for single-molecule conductance studies, and the molecules were subjected to mechanically controlled break-junction measurements with gold contacts and to low-bias charge transport measurements in gated three-terminal electromigration junctions. The neutral molecules showed clear conductance signatures, and somewhat surprisingly, we found that a meta–meta anchoring configuration gave a higher conductance than a para–meta configuration. We explain this behavior by “through-space” coupling between the gold electrode and the phenyl on which the anchoring group is attached. Upon charging the molecule in a gated junction, we found reproducibly a Kondo effect (zero-bias conductance) attributed to a net spin. Ready generation of radical cations was supported by cyclic voltammetry measurements, revealing stepwise formation of radical cation and dication species in solution. The first oxidation event was accompanied by association reactions as the appearance of the first oxidation peak was strongly concentration dependent.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Kondo resonance in a single-molecule transistor.

          When an individual molecule, nanocrystal, nanotube or lithographically defined quantum dot is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena, including the Kondo resonance. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory.

            The design, synthesis, and characterization of new high-performance n-channel molecular/polymeric semiconductors that are solution-processable and air-stable is of great interest for the development of p-n junctions, bipolar transistors, and organic complementary circuitry (CMOS). While over the past two decades there have been many reports on n-channel materials, solution-processability and air-stability still remain as major challenges. We report here the synthesis and detailed characterization of a highly electron-deficient class of indeno[1,2-b]fluorene-6,12-dione, 2,2'-(indeno[1,2-b]fluorene-6,12-diylidene) dimalononitrile, bisindenofluorene-12,15-dione, and 2,2'-(bisindenofluorene-12,15-diylidene) dimalononitrile-based ladder-type building blocks (1-12) and their corresponding homo- and copolymers (P1-P14), and examine in detail the effects of core size, thiophene vs core regiochemistry, carbonyl vs dicyanovinylene functionality, and alkyl chain orientation on the physicochemical properties, thin film microstructures, and OFET device performance. New compounds are characterized by DSC, TGA, melting point, single-crystal X-ray diffraction (XRD), solution/thin film optical, PL, and cyclic voltammetry measurements to evaluate frontier molecular orbital energetics and intermolecular cohesive forces. Thin films are grown by vacuum deposition and spin-coating, and investigated by X-ray diffraction (XRD) and AFM. By tuning the HOMO/LUMO energetics of the present materials over a 1.1 eV range, p-type, n-type, or ambipolar charge transport characteristics can be observed, thus identifying the MO energetic windows governing majority carrier polarity and air stability. One of these systems, thiophene-terminated indenofluorenedicyanovinylene 10 exhibits an electron mobility of 0.16 cm(2)/V x s and an I(on)/I(off) ratio of 10(7)-10(8), one of the highest to date for a solution-cast air-stable n-channel semiconductor. Here we also report solution-processed ambipolar films of thiophene-based molecule 12 and copolymers P13 and P14 which exhibit electron and hole mobilities of 1 x 10(-3)-2 x 10(-4) and I(on)/I(off) ratios of approximately 10(4), representing the first examples of molecular and polymeric ambipolar semiconductors to function in air. Analysis of the operational air-stabilities of a series of thin films having different crystallinities, orientations, and morphologies suggests that operational air-stability for thermodynamically predicted (i.e., no kinetic barrier contribution) air-stable semiconductors is principally governed by LUMO energetics with minimal contribution from thin-film microstructure. The onset LUMO energy for carrier electron stabilization is estimated as -4.0 to -4.1 eV, indicating an overpotential of 0.9-1.0 eV. Density functional theory calculations provide detailed insight into molecule/polymer physicochemical and charge transport characteristics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-molecule transistors.

              The use of a gate electrode allows us to gain deeper insight into the electronic structure of molecular junctions. It is widely used for spectroscopy of the molecular levels and its excited states, for changing the charge state of the molecule and investigating higher order processes such as co-tunneling and the Kondo effect. Gate electrodes have been implemented in several types of nanoscale devices such as electromigration junctions, mechanically controllable break junctions, and devices with carbon-based electrodes. Here we review the state-of-the-art in the field of single-molecule transitors. We discuss the experimental challenges and describe the advances made for the different approaches.
                Bookmark

                Author and article information

                Journal
                J Org Chem
                J. Org. Chem
                jo
                joceah
                The Journal of Organic Chemistry
                American Chemical Society
                0022-3263
                1520-6904
                22 August 2016
                16 September 2016
                22 August 2017
                : 81
                : 18
                : 8406-8414
                Affiliations
                []Department of Chemistry, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
                []Kavli Institute of Nanoscience, Delft University of Technology , Lorentzweg 1, 2628 CJ Delft, The Netherlands
                Author notes
                Article
                10.1021/acs.joc.6b01579
                5038357
                27548751
                f5802a4a-ed1c-44fb-83a4-7b2228dc6a2f
                Copyright © 2016 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 01 July 2016
                Categories
                Article
                Custom metadata
                jo6b01579
                jo-2016-01579e

                Organic & Biomolecular chemistry
                Organic & Biomolecular chemistry

                Comments

                Comment on this article