Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths

      ,
      Monthly Notices of the Royal Astronomical Society
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid planetesimal formation in turbulent circumstellar disks

          During the initial stages of planet formation in circumstellar gas disks, dust grains collide and build up larger and larger bodies. How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem: boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a 'headwind' from the slower rotating gas. Gravitational collapse of the solid component has been suggested to overcome this barrier. But even low levels of turbulence will inhibit sedimentation of solids to a sufficiently dense midplane layer, and turbulence must be present to explain observed gas accretion in protostellar disks. Here we report that boulders can undergo efficient gravitational collapse in locally overdense regions in the midplane of the disk. The boulders concentrate initially in transient high pressure regions in the turbulent gas, and these concentrations are augmented a further order of magnitude by a streaming instability driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar disks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A closely packed system of low-mass, low-density planets transiting Kepler-11.

            When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Streaming Instabilities in Protoplanetary Disks

                Bookmark

                Author and article information

                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                1365-2966
                0035-8711
                June 1 2013
                June 01 2013
                April 11 2013
                June 1 2013
                June 01 2013
                April 11 2013
                : 431
                : 4
                : 3444-3455
                Article
                10.1093/mnras/stt424
                f59c2518-75f3-4156-9aed-21da94863076
                © 2013
                History

                Comments

                Comment on this article