29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          An overview of tissue and whole organ decellularization processes.

          Biologic scaffold materials composed of extracellular matrix (ECM) are typically derived by processes that involve decellularization of tissues or organs. Preservation of the complex composition and three-dimensional ultrastructure of the ECM is highly desirable but it is recognized that all methods of decellularization result in disruption of the architecture and potential loss of surface structure and composition. Physical methods and chemical and biologic agents are used in combination to lyse cells, followed by rinsing to remove cell remnants. Effective decellularization methodology is dictated by factors such as tissue density and organization, geometric and biologic properties desired for the end product, and the targeted clinical application. Tissue decellularization with preservation of ECM integrity and bioactivity can be optimized by making educated decisions regarding the agents and techniques utilized during processing. An overview of decellularization methods, their effect upon resulting ECM structure and composition, and recently described perfusion techniques for whole organ decellularization techniques are presented herein. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decellularization of tissues and organs.

            Decellularized tissues and organs have been successfully used in a variety of tissue engineering/regenerative medicine applications, and the decellularization methods used vary as widely as the tissues and organs of interest. The efficiency of cell removal from a tissue is dependent on the origin of the tissue and the specific physical, chemical, and enzymatic methods that are used. Each of these treatments affect the biochemical composition, tissue ultrastructure, and mechanical behavior of the remaining extracellular matrix (ECM) scaffold, which in turn, affect the host response to the material. Herein, the most commonly used decellularization methods are described, and consideration give to the effects of these methods upon the biologic scaffold material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-inflammatory evaluation of gardenia extract, geniposide and genipin.

              Gardenia fruit has been traditionally used as a folk medicine for centuries in Asian countries. Extraction with ethanol was used to obtain an extract (GFE) that contains two known constituents, geniposide and genipin, which were subsequently evaluated for anti-inflammatory activity. GFE, genipin, and geniposide showed acute anti-inflammatory activities in carrageenan-induced rat paw edema. In a dose-dependent manner, GFE also inhibited vascular permeability induced by acetic acid. Both genipin and geniposide inhibited production of exudate and nitric oxide (NO) in the rat air pouch edema model. However, genipin possessed stronger anti-inflammatory activity than geniposide, as demonstrated by the results with carrageenan-induced rat paw edema, carrageenan-induced air pouch formation, and measurement of NO content in the exudates. GFE caused a dose-dependent inhibition of acetic acid-induced abdominal writhing in mice. Collectively, genipin, rather than geniposide, is the major anti-inflammatory component of gardenia fruit.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 April 2016
                2016
                : 6
                : 24429
                Affiliations
                [1 ]Department of Cardiothoracic Surgery, College of Clinical Medicine, Yangzhou University , Yangzhou, 225001, Jiangsu Province, China
                [2 ]Yangzhou University Medical College , Yangzhou, 225001, Jiangsu Province, China
                [3 ]Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou, 225001, Jiangsu Province, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep24429
                10.1038/srep24429
                4832209
                27080716
                f5c8ea44-921e-4692-8090-aba42e8af328
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 September 2015
                : 22 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article