74
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA) and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX) cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38%) versus 34 of 175 subjects (19%); Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5′ and 3′ half genome or env-only sequences from plasma viral RNA (vRNA) and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3–6 days before symptom onset and 14–17 days before peak plasma viremia (47,600,000 vRNA molecules/ml). All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1 vaccines than previously recognized.

          Author Summary

          Understanding the biology of sexual transmission of HIV-1 could contribute importantly to the development of effective prevention measures. However, different routes of virus transmission (vaginal, rectal, penile or oral) and inaccessibility of tissues at or near the time of virus transmission make this goal elusive. Here, we apply single genome amplification and sequencing of plasma HIV-1 and a model of random virus evolution to a cohort of acutely infected men who have sex with men (MSM) and find that MSM are twice as likely as heterosexuals to become infected by multiple viruses as opposed to a single virus. Some MSM subjects were infected by as many as 7 to 10 or more genetically distinct viruses as a consequence of a single exposure event. We go on to molecularly clone the first full-length transmitted/founder subtype B HIV-1 virus and show that it is highly replicative in human CD4+ T-cells but not macrophages. Our study provides the first comparative, quantitative analysis of the multiplicity of HIV-1 infection in the two primary risk groups—MSM and heterosexuals—driving the global pandemic, and we discuss the implications of the findings to HIV-1 vaccine development and prevention research.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          DnaSP, DNA polymorphism analyses by the coalescent and other methods.

          DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (approximately 5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection

            Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing.

              Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2010
                May 2010
                13 May 2010
                : 6
                : 5
                : e1000890
                Affiliations
                [1 ]Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                [2 ]Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                [3 ]Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
                [4 ]Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
                [5 ]Nuclear and Particle Physics, Astrophysics and Cosmology (T-2), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
                [6 ]Santa Fe Institute, Santa Fe, New Mexico, United States of America
                [7 ]Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [8 ]Department of Medicine, Duke University, Durham, North Carolina, United States of America
                [9 ]Aaron Diamond AIDS Research Center, New York, New York, United States of America
                [10 ]Rockefeller University, New York, New York, United States of America
                [11 ]SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
                [12 ]Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                NIH/NIAID, United States of America
                Author notes

                Conceived and designed the experiments: HL KJB BTK JJE MSC CBH BFH MM BFK BHH GMS. Performed the experiments: HL KJB SW JMD YC CS JFSG MGS. Analyzed the data: HL KJB GHL CJM JES PH EEG TB BTK ASP BFK BHH GMS. Wrote the paper: HL KJB BHH GMS.

                Article
                09-PLPA-RA-2313R3
                10.1371/journal.ppat.1000890
                2869329
                20485520
                f5f79d90-c3f0-4623-a26b-98fce8f22fe2
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 18 December 2009
                : 1 April 2010
                Page count
                Pages: 17
                Categories
                Research Article
                Infectious Diseases/HIV Infection and AIDS
                Infectious Diseases/Sexually Transmitted Diseases
                Virology
                Virology/Animal Models of Infection
                Virology/Host Invasion and Cell Entry
                Virology/Immune Evasion
                Virology/Immunodeficiency Viruses
                Virology/Vaccines
                Virology/Virus Evolution and Symbiosis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article