2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comparative study of effects of curcumin and its nanoparticles on the growth, immunity and heat stress resistance of Nile tilapia ( Oreochromis niloticus)

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK
      Physiology, Zoology, Ocean sciences

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study evaluated the effects of dietary supplementation with free- or nano-curcumin on the growth performance, immune status and heat stress resistance of Nile tilapia ( Oreochromis niloticus). Seven isonitrogenous (28% protein) and isocaloric (445 kcal/100 g DM) diets were prepared. Six diets were supplemented with three levels of nano-curcumin (50 (CN50), 100 (CN100), 200 (CN200) mg kg −1 diet) or free-curcumin (50 (C50), 100 (C100), 200 (C200) mg kg −1 diet), and the control diet was left without an additive (CON). Fish (13.54 ± 0.32 g) (mean ± SD) fed the experimental diets for 65 days. Following the feeding trial, the fish were exposed to the acute heat stress by gradually raising the water temperature from 25 to 40 °C within 3 h. The fish were then exposed to 40 °C for 4 h. Results revealed the superiority of nano-curcumin over its free-form in enhancing the growth performance, with the highest results obtained at CN100, followed by CN200. Only heat stress, not the experimental diets, increased the platelets, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), leukocytes and neutrophils count, while lymphocytes decreased. The CN50 and CN100 groups showed lower activity of liver enzymes (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) than the other treatments, while C200 gave the highest activity of these enzymes. The highest immunoglobulin (IgM) levels were detected in CN100, CN200, C100 and C200, followed by CN50. The C200 group showed higher levels of complement 3 and complement 4 (C3 and C4, respectively) than the other treatments. The C50 and CON groups gave the lowest values of IgM, C3 and C4. Cortisol levels were significantly lower in the CN50 and CN100 groups compared to the other groups. After the heat stress, ALT, AST, IgM, C3, C4, cortisol and glucose increased. Thus, nano-curcumin is more effective than its free-form in enhancing the resistance to heat stress, inducing innate immunity, lowering the stress indicators and promoting growth performance of Nile tilapia with the best concentration at 100 mg kg −1 diet.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of regional climate change on human health.

          The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles

            Nanoparticle (NP) drug delivery systems (5−250 nm) have the potential to improve current disease therapies because of their ability to overcome multiple biological barriers and releasing a therapeutic load in the optimal dosage range. Rapid clearance of circulating nanoparticles during systemic delivery is a critical issue for these systems and has made it necessary to understand the factors affecting particle biodistribution and blood circulation half-life. In this review, we discuss the factors which can influence nanoparticle blood residence time and organ specific accumulation. These factors include interactions with biological barriers and tunable nanoparticle parameters, such as composition, size, core properties, surface modifications (pegylation and surface charge), and finally, targeting ligand functionalization. All these factors have been shown to substantially affect the biodistribution and blood circulation half-life of circulating nanoparticles by reducing the level of nonspecific uptake, delaying opsonization, and increasing the extent of tissue specific accumulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The complement system

              The complement system consists of a tightly regulated network of proteins that play an important role in host defense and inflammation. Complement activation results in opsonization of pathogens and their removal by phagocytes, as well as cell lysis. Inappropriate complement activation and complement deficiencies are the underlying cause of the pathophysiology of many diseases such as systemic lupus erythematosus and asthma. This review represents an overview of the complement system in an effort to understand the beneficial as well as harmful roles it plays during inflammatory responses.
                Bookmark

                Author and article information

                Contributors
                heba_elshamy85@yahoo.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 February 2023
                13 February 2023
                2023
                : 13
                : 2523
                Affiliations
                GRID grid.419615.e, ISNI 0000 0004 0404 7762, National Institute of Oceanography and Fisheries, NIOF, ; Cairo, Egypt
                Article
                29343
                10.1038/s41598-023-29343-z
                9925755
                36781934
                f60d73b4-978b-472e-bc27-06a84441ecac
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 August 2022
                : 2 February 2023
                Funding
                Funded by: National Institute of Oceanography & Fisheries (NIOF)
                Categories
                Article
                Custom metadata
                © The Author(s) 2023

                Uncategorized
                physiology,zoology,ocean sciences
                Uncategorized
                physiology, zoology, ocean sciences

                Comments

                Comment on this article