27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Step Size and Lower Limb Segment Orientation from Multiple Low-Cost Wearable Inertial/Magnetic Sensors for Pedestrian Navigation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper demonstrates the use of multiple low-cost inertial/magnetic sensors as a pedestrian navigation system for indoor positioning. This research looks at the problem of pedestrian navigation in a practical manner by investigating dead-reckoning methods using low-cost sensors. This work uses the estimated sensor orientation angles to compute the step size from the kinematics of a skeletal model. The orientations of limbs are represented by the tilt angles estimated from the inertial measurements, especially the pitch angle. In addition, different step size estimation methods are compared. A sensor data logging system is developed in order to record all motion data from every limb segment using a single platform and similar types of sensors. A skeletal model of five segments is chosen to model the forward kinematics of the lower limbs. A treadmill walk experiment with an optical motion capture system is conducted for algorithm evaluation. The mean error of the estimated orientation angles of the limbs is less than 6 degrees. The results show that the step length mean error is 3.2 cm, the left stride length mean error is 12.5 cm, and the right stride length mean error is 9 cm. The expected positioning error is less than 5% of the total distance travelled.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          A Survey of Indoor Inertial Positioning Systems for Pedestrians

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of walking features from foot inertial sensing.

            An ambulatory monitoring system is developed for the estimation of spatio-temporal gait parameters. The inertial measurement unit embedded in the system is composed of one biaxial accelerometer and one rate gyroscope, and it reconstructs the sagittal trajectory of a sensed point on the instep of the foot. A gait phase segmentation procedure is devised to determine temporal gait parameters, including stride time and relative stance; the procedure allows to define the time intervals needed for carrying an efficient implementation of the strapdown integration, which allows to estimate stride length, walking speed, and incline. The measurement accuracy of walking speed and inclines assessments is evaluated by experiments carried on adult healthy subjects walking on a motorized treadmill. Root-mean-square errors less than 0.18 km/h (speed) and 1.52% (incline) are obtained for tested speeds and inclines varying in the intervals [3, 6] km/h and [-5, + 15]%, respectively. Based on the results of these experiments, it is concluded that foot inertial sensing is a promising tool for the reliable identification of subsequent gait cycles and the accurate assessment of walking speed and incline.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zero-velocity detection --- an algorithm evaluation.

              In this study, we investigate the problem of detecting time epochs when zero-velocity updates can be applied in a foot-mounted inertial navigation (motion tracking) system. We examine three commonly used detectors: the acceleration moving variance detector, the acceleration magnitude detector, and the angular rate energy detector. We demonstrate that all detectors can be derived within the same general likelihood ratio test framework given the different prior knowledge about the sensor signals. Further, by combining all prior knowledge, we derive a new likelihood ratio test detector. Subsequently, we develop a methodology to evaluate the performance of the detectors. Employing the developed methodology, we evaluate the performance of the detectors using leveled ground, slow (approx. 3 km/h) and normal (approx. 5 km/h) gait data. The test results are presented in terms of detection versus false-alarm probability. Our preliminary results shows that the new detector performs marginally better than the angular rate energy detector that outperforms both the acceleration moving variance detector and the acceleration magnitude detector.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                17 July 2019
                July 2019
                : 19
                : 14
                : 3140
                Affiliations
                Position, Location, and Navigation (PLAN) Group, Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, AB T2N 1N4, Canada
                Author notes
                [* ]Correspondence: chandra.tjhai@ 123456ucalgary.ca (C.T.); kpgokeef@ 123456ucalgary.ca (K.O.); Tel.: +1-403-210-9798 (C.T.); +1-403-220-7378 (K.O.)
                Author information
                https://orcid.org/0000-0002-6640-9875
                https://orcid.org/0000-0003-2123-2372
                Article
                sensors-19-03140
                10.3390/s19143140
                6679558
                31319508
                f6144351-8b2f-421c-b9dd-99675558ee2c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 May 2019
                : 12 July 2019
                Categories
                Article

                Biomedical engineering
                forward kinematics,pitch angle,skeletal model,step size,step length,stride length,wearable sensors,wearable multi-sensor system

                Comments

                Comment on this article