51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of immuno-efficacy of a novel DNA vaccine encoding Toxoplasma gondii rhoptry protein 38 (TgROP38) against chronic toxoplasmosis in a murine model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Toxoplasma gondii is an obligate intracellular parasite which can infect almost all mammalian animals, leading to toxoplasmosis. T. gondii rhoptry protein 38 (TgROP38) is an active rhoptry protein kinase which is involved in the inhibitory effect on host cell transcription by down-regulating the MAPK signaling track.

          Methods

          TgROP38 gene was amplified and inserted into eukaryotic vector pVAX I and formed the DNA vaccine pVAX-ROP38. Mice in the experimental group were intramuscularly immunized with pVAX-ROP38 and those injected with pVAX I, PBS or nothing were treated as controls. After three injections at two week intervals, all mouse groups were challenged intraperitoneally with 1000 tachyzoites of the virulent T. gondii RH strain (Type I, ToxoDB #10) and 10 cysts of the PRU strain (Type II, ToxoDB #1), respectively.

          Results

          Mice inoculated with pVAX-ROP38 vaccine had a higher level of IgG antibodies ( P < 0.01) and T lymphoproliferative response. The high ratio of IgG2a/IgG1 and the increasing levels of IFN-γ and IL-2 ( P < 0.05) indicated an activated Th1 cell-mediated immune responses. Furthermore, the CD4 + and CD8 + proportions in vaccinated mice were also increased significantly compared with that in mice of the three control groups ( P < 0.01). In the model of acute infection, the average survival time of mice in the pVAX-ROP38 group (8.1 days ± 0.75) was no statistically different compared to that in the PBS, pVAX I and blank control groups which died within 7 days. However, in the model of chronic infection, the brain cyst reduction in the pVAX-ROP38 group reached 76.6%, compared to controls ( P < 0.01).

          Conclusions

          The present study revealed that the pVAX-ROP38 vaccine could elicit strong humoral and cell immunity response against chronic T. gondii infection in mice, resulting in the reduction of the brain cyst formation effectively, which suggests that TgROP38 is a desirable vaccine candidate against chronic T. gondii infection.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Toxoplasmosis: A history of clinical observations.

          It has been 100 years since Toxoplasma gondii was initially described in Tunis by Nicolle and Manceaux (1908) in the tissues of the gundi (Ctenodoactylus gundi) and in Brazil by Splendore (1908) in the tissues of a rabbit. Toxoplasma gondii is a ubiquitous, Apicomplexan parasite of warm-blooded animals that can cause several clinical syndromes including encephalitis, chorioretinitis, congenital infection and neonatal mortality. Fifteen years after the description of T. gondii by Nicolle and Manceaux a fatal case of toxoplasmosis in a child was reported by Janků. In 1939 Wolf, Cowen and Paige were the first to conclusively identify T. gondii as a cause of human disease. This review examines the clinical manifestations of infection with T. gondii and the history of the discovery of these manifestations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune response and immunopathology during toxoplasmosis.

            Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.

              Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.
                Bookmark

                Author and article information

                Contributors
                happydlmxy@163.com
                nianzhang919@163.com
                ahndtan_qidong@126.com
                chenjia_2009@163.com
                307926063@qq.com
                qmxu@sina.com
                xingquanzhu1@hotmail.com
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                30 September 2014
                30 September 2014
                2014
                : 14
                : 1
                : 525
                Affiliations
                [ ]State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046 P. R. China
                [ ]College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036 P. R. China
                Article
                3845
                10.1186/1471-2334-14-525
                4261603
                25267356
                f728e7dd-0bcf-45ab-8ee6-0035952e1198
                © Xu et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 March 2014
                : 25 September 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Infectious disease & Microbiology
                toxoplasma gondii,toxoplasmosis,tgrop38,dna vaccine,protective immunity,mouse

                Comments

                Comment on this article