7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Consequences of recurrent hypoglycaemia on brain function in diabetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          The discovery of insulin and its subsequent mass manufacture transformed the lives of people with type 1 and 2 diabetes. Insulin, however, was a drug with a ‘dark side’. It brought with it the risk of iatrogenic hypoglycaemia. In this short review, the cellular consequences of recurrent hypoglycaemia, with a particular focus on the brain, are discussed. Using the ventromedial hypothalamus as an exemplar, this review highlights how recurrent hypoglycaemia has an impact on the specialised cells in the brain that are critical to the regulation of glucose homeostasis and the counterregulatory response to hypoglycaemia. In these cells, recurrent hypoglycaemia initiates a series of adaptations that ensure that they are more resilient to subsequent hypoglycaemia, but this leads to impaired hypoglycaemia awareness and a paradoxical increased risk of severe hypoglycaemia. This review also highlights how hypoglycaemia, as an oxidative stressor, may also exacerbate chronic hyperglycaemia-induced increases in oxidative stress and inflammation, leading to damage to vulnerable brain regions (and other end organs) and accelerating cognitive decline. Pre-clinical research indicates that glucose recovery following hypoglycaemia is considered a period where reactive oxygen species generation and oxidative stress are pronounced and can exacerbate the longer-term consequence of chronic hypoglycaemia. It is proposed that prior glycaemic control, hypoglycaemia and the degree of rebound hyperglycaemia interact synergistically to accelerate oxidative stress and inflammation, which may explain why increased glycaemic variability is now increasingly considered a risk factor for the complications of diabetes.

          Supplementary Information

          The online version contains a slideset of the figures for download, which is available to authorised users, available at 10.1007/s00125-020-05369-0.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          The pathobiology of diabetic complications: a unifying mechanism.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetes and cognitive dysfunction.

            Cognitive dysfunction in type 1 and type 2 diabetes share many similarities, but important differences do exist. A primary distinguishing feature of type 2 diabetes is that people with this disorder often (but not invariably) do poorly on measures of learning and memory, whereas deficits in these domains are rarely seen in people with type 1 diabetes. Chronic hyperglycaemia and microvascular disease contribute to cognitive dysfunction in both type 1 and type 2 diabetes, and both disorders are associated with mental and motor slowing and decrements of similar magnitude on measures of attention and executive functioning. Additionally, both types are characterised by neural slowing, increased cortical atrophy, microstructural abnormalities in white matter tracts, and similar, but not identical, changes in concentrations of brain neurometabolites. Disconcertingly, the rapid rise in obesity and type 2 diabetes in all age groups might result in a substantial increase in prevalence of diabetes-related cognitive dysfunction. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glycaemic variability in diabetes: clinical and therapeutic implications

              Glycaemic variability is an integral component of glucose homoeostasis. Although it has not yet been definitively confirmed as an independent risk factor for diabetes complications, glycaemic variability can represent the presence of excess glycaemic excursions and, consequently, the risk of hyperglycaemia or hypoglycaemia. Glycaemic variability is currently defined by a large and increasing number of metrics, representing either short-term (within-day and between-day variability) or long-term glycaemic variability, which is usually based on serial measurements of HbA1c or other measures of glycaemia over a longer period of time. In this Review, we discuss recent evidence examining the association between glycaemic variability and diabetes-related complications, as well as non-pharmacological and pharmacological strategies currently available to address this challenging aspect of diabetes management.
                Bookmark

                Author and article information

                Contributors
                r.mccrimmon@dundee.ac.uk
                Journal
                Diabetologia
                Diabetologia
                Diabetologia
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0012-186X
                1432-0428
                18 March 2021
                18 March 2021
                2021
                : 64
                : 5
                : 971-977
                Affiliations
                Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
                Author information
                https://orcid.org/0000-0002-3957-1981
                Article
                5369
                10.1007/s00125-020-05369-0
                8012314
                33738528
                f73e8a58-0088-490b-a20f-7f65dda6cbee
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 October 2020
                : 2 December 2020
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Endocrinology & Diabetes
                glucose-sensing,glycaemic variability,hypoglycaemia,impaired hypoglycaemia awareness,insulin,oxidative stress,review,type 1 diabetes,type 2 diabetes

                Comments

                Comment on this article