7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tuberculosis conundrum - current and future scenarios: A proposed comprehensive approach combining laboratory, imaging, and computing advances

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tuberculosis (TB) remains a global threat, with the rise of multiple and extensively drug resistant TB posing additional challenges. The International health community has set various 5-yearly targets for TB elimination: mathematical modelling suggests that a 2050 target is feasible with a strategy combining better diagnostics, drugs, and vaccines to detect and treat both latent and active infection. The availability of rapid and highly sensitive diagnostic tools (Gene-Xpert, TB-Quick) will vastly facilitate population-level identification of TB (including rifampicin resistance and through it, multi-drug-resistant TB). Basic-research advances have illuminated molecular mechanisms in TB, including the protective role of Vitamin D. Also, Mycobacterium tuberculosis impairs the host immune response through epigenetic mechanisms (histone-binding modulation). Imaging will continue to be key, both for initial diagnosis and follow-up. We discuss advances in multiple imaging modalities to evaluate TB tissue changes, such as molecular imaging techniques (including pathogen-specific positron emission tomography imaging agents), non-invasive temporal monitoring, and computing enhancements to improve data acquisition and reduce scan times. Big data analysis and Artificial Intelligence (AI) algorithms, notably in the AI sub-field called “Deep Learning”, can potentially increase the speed and accuracy of diagnosis. Additionally, Federated learning makes multi-institutional/multi-city AI-based collaborations possible without sharing identifiable patient data. More powerful hardware designs - e.g., Edge and Quantum Computing- will facilitate the role of computing applications in TB. However, “Artificial Intelligence needs real Intelligence to guide it!” To have maximal impact, AI must use a holistic approach that incorporates time tested human wisdom gained over decades from the full gamut of TB, i.e., key imaging and clinical parameters, including prognostic indicators, plus bacterial and epidemiologic data. We propose a similar holistic approach at the level of national/international policy formulation and implementation, to enable effective culmination of TB’s endgame, summarizing it with the acronym “TB - REVISITED”.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks

          Purpose To evaluate the efficacy of deep convolutional neural networks (DCNNs) for detecting tuberculosis (TB) on chest radiographs. Materials and Methods Four deidentified HIPAA-compliant datasets were used in this study that were exempted from review by the institutional review board, which consisted of 1007 posteroanterior chest radiographs. The datasets were split into training (68.0%), validation (17.1%), and test (14.9%). Two different DCNNs, AlexNet and GoogLeNet, were used to classify the images as having manifestations of pulmonary TB or as healthy. Both untrained and pretrained networks on ImageNet were used, and augmentation with multiple preprocessing techniques. Ensembles were performed on the best-performing algorithms. For cases where the classifiers were in disagreement, an independent board-certified cardiothoracic radiologist blindly interpreted the images to evaluate a potential radiologist-augmented workflow. Receiver operating characteristic curves and areas under the curve (AUCs) were used to assess model performance by using the DeLong method for statistical comparison of receiver operating characteristic curves. Results The best-performing classifier had an AUC of 0.99, which was an ensemble of the AlexNet and GoogLeNet DCNNs. The AUCs of the pretrained models were greater than that of the untrained models (P < .001). Augmenting the dataset further increased accuracy (P values for AlexNet and GoogLeNet were .03 and .02, respectively). The DCNNs had disagreement in 13 of the 150 test cases, which were blindly reviewed by a cardiothoracic radiologist, who correctly interpreted all 13 cases (100%). This radiologist-augmented approach resulted in a sensitivity of 97.3% and specificity 100%. Conclusion Deep learning with DCNNs can accurately classify TB at chest radiography with an AUC of 0.99. A radiologist-augmented approach for cases where there was disagreement among the classifiers further improved accuracy. © RSNA, 2017.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical exchange saturation transfer (CEST): what is in a name and what isn't?

            Chemical exchange saturation transfer (CEST) imaging is a relatively new magnetic resonance imaging contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic magnetic resonance principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast. In CEST magnetic resonance imaging, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to magnetization transfer contrast, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to magnetization transfer contrast, CEST imaging requires sufficiently slow exchange on the magnetic resonance time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans. Copyright © 2011 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Theranostic nanomedicine.

              Nanomedicine formulations aim to improve the biodistribution and the target site accumulation of systemically administered (chemo)therapeutic agents. Many different types of nanomedicines have been evaluated over the years, including for instance liposomes, polymers, micelles and antibodies, and a significant amount of evidence has been obtained showing that these submicrometer-sized carrier materials are able to improve the balance between the efficacy and the toxicity of therapeutic interventions. Besides for therapeutic purposes, nanomedicine formulations have in recent years also been increasingly employed for imaging applications. Moreover, paralleled by advances in chemistry, biology, pharmacy, nanotechnology, medicine and imaging, several different systems have been developed in the last decade in which disease diagnosis and therapy are combined. These so-called (nano) theranostics contain both a drug and an imaging agent within a single formulation, and they can be used for various different purposes. In this Account, we summarize several exemplary efforts in this regard, and we show that theranostic nanomedicines are highly suitable systems for monitoring drug delivery, drug release and drug efficacy. The (pre)clinically most relevant applications of theranostic nanomedicines relate to their use for validating and optimizing the properties of drug delivery systems, and to their ability to be used for pre-screening patients and enabling personalized medicine. Regarding the former, the combination of diagnostic and therapeutic agents within a single formulation provides real-time feedback on the pharmacokinetics, the target site localization and the (off-target) healthy organ accumulation of nanomedicines. Various examples of this will be highlighted in this Account, illustrating that by non-invasively visualizing how well carrier materials are able to deliver pharmacologically active agents to the pathological site, and how well they are able to prevent them from accumulating in potentially endangered healthy tissues, important information can be obtained for optimizing the basic properties of drug delivery systems, as well as for improving the balance between the efficacy and the toxicity of targeted therapeutic interventions. Regarding personalized medicine, it can be reasoned that only in patients which show high levels of target site accumulation, and which respond well to the first couple of treatment cycles, targeted therapy should be continued, and that in those in which this is not the case, other therapeutic options should be considered. Based on these insights, we expect that ever more efforts will be invested in developing theranostic nanomedicines, and that these systems and strategies will contribute substantially to realizing the potential of personalized medicine.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Radiol
                WJR
                World Journal of Radiology
                Baishideng Publishing Group Inc
                1949-8470
                28 June 2022
                28 June 2022
                : 14
                : 6
                : 114-136
                Affiliations
                Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai 400022, Maharashtra, India. suleman.a.merchant@ 123456gmail.com
                Department of Radiology, North Bengal Neuro Centre, Jupiter magnetic resonance imaging, Diagnostic Centre, Siliguri 734003, West Bengal, India
                College of Nursing, University of Iowa, Iowa 52242, IA, United States
                Author notes

                Author contributions: Merchant SA conceptualized the article; all authors wrote, read and approved the final manuscript.

                Corresponding author: Suleman Adam Merchant, MBBS, MD, Former Dean, Professor & Head (Radiology), Lokmanya Tilak Municipal Medical College and General Hospital, Sion Hospital, Mumbai 400022, Maharashtra, India. suleman.a.merchant@ 123456gmail.com

                Article
                jWJR.v14.i6.pg114
                10.4329/wjr.v14.i6.114
                9258306
                35978978
                f7ff51a4-46ae-42c0-93e0-90ac5b9775df
                ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 17 January 2022
                : 17 April 2022
                : 27 May 2022
                Categories
                Review

                tuberculosis,radiology,genxpert,artificial intelligence,molecular imaging,quantum computing

                Comments

                Comment on this article