27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Drosophila melanogaster Prat, a Purine de Novo Synthesis Gene, Has a Pleiotropic Maternal-Effect Phenotype

      ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Drosophila melanogaster, two genes, Prat and Prat2, encode the enzyme, amidophosphoribosyltransferase, that performs the first and limiting step in purine de novo synthesis. Only Prat mRNA is present in the female germline and 0- to 2-hr embryos prior to the onset of zygotic transcription. We studied the maternal-effect phenotype caused by Prat loss-of-function mutations, allowing us to examine the effects of decreased purine de novo synthesis during oogenesis and the early stages of embryonic development. In addition to the purine syndrome previously characterized, we found that Prat mutant adult females have a significantly shorter life span and are conditionally semisterile. The semisterility is associated with a pleiotropic phenotype, including egg chamber defects and later effects on embryonic and larval viability. Embryos show mitotic synchrony and/or nuclear content defects at the syncytial blastoderm stages and segmentation defects at later stages. The semisterility is partially rescued by providing Prat mutant females with an RNA-enriched diet as a source of purines. Our results suggest that purine de novo synthesis is a limiting factor during the processes of cellular or nuclear proliferation that take place during egg chamber and embryonic development.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster.

          We characterized RNA transcript levels for the whole Drosophila genome during normal aging. We compared age-dependent profiles from animals aged under full-nutrient conditions with profiles obtained from animals maintained on a low-calorie medium to determine if caloric restriction slows the aging process. Specific biological functions impacted by caloric restriction were identified using the Gene Ontology annotation. We used the global patterns of expression profiles to test if particular genomic regions contribute differentially to changes in transcript profiles with age and if global disregulation of gene expression occurs during aging. Whole-genome transcript profiles contained a statistically powerful genetic signature of normal aging. Nearly 23% of the genome changed in transcript representation with age. Caloric restriction was accompanied by a slowing of the progression of normal, age-related changes in transcript levels. Many genes, including those associated with stress response and oogenesis, showed age-dependent transcript representation. Caloric restriction resulted in the downregulation of genes primarily involved in cell growth, metabolism, and reproduction. We found no evidence that age-dependent changes in transcription level were confined to genes localized to specific regions of the genome and found no support for widespread disregulation of gene expression with age. Aging is characterized by highly dynamic changes in the expression of many genes, which provides a powerful molecular description of the normal aging process. Caloric restriction extends life span by slowing down the rate of normal aging. Transcription levels of genes from a wide variety of biological functions and processes are impacted by age and dietary conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oskar organizes the germ plasm and directs localization of the posterior determinant nanos.

            Oskar is one of seven Drosophila maternal-effect genes that are necessary for germline and abdomen formation. We have cloned oskar and show that oskar RNA is localized to the posterior pole of the oocyte when germ plasm forms. This polar distribution of oskar RNA is established during oogenesis in three phases: accumulation in the oocyte, transport toward the posterior, and finally maintenance at the posterior pole of the oocyte. The colocalization of oskar and nanos in wild-type and bicaudal embryos suggests that oskar directs localization of the posterior determinant nanos. We propose that the pole plasm is assembled stepwise and that continued interaction among its components is required for germ cell determination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Life extension in Drosophila by feeding a drug.

              We report that feeding Drosophila throughout adulthood with 4-phenylbutyrate (PBA) can significantly increase lifespan, without diminution of locomotor vigor, resistance to stress, or reproductive ability. Treatment for a limited period, either early or late in adult life, is also effective. Flies fed PBA show a global increase in histone acetylation as well as a dramatically altered pattern of gene expression, including induction or repression of numerous genes. The delay in aging may result from the altered physiological state.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                December 20 2004
                December 2004
                December 2004
                December 20 2004
                : 168
                : 4
                : 2011-2023
                Article
                10.1534/genetics.104.033134
                1448727
                15611171
                f81e1173-7834-4d8a-86d7-ed330dc34f17
                © 2004
                History

                Comments

                Comment on this article