26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Core 2 mucin-type O-glycan inhibits EPEC or EHEC O157:H7 invasion into HT-29 epithelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          How host cell glycosylation affects EPEC or EHEC O157:H7 invasion is unclear. This study investigated whether and how O-glycans were involved in EPEC or EHEC O157:H7 invasion into HT-29 cells.

          Results

          Lectin histochemical staining confirmed stronger staining with PNA, which labeled Galβ1, 3 GalNAc (core 1 structure) in HT-29-Gal-OBN and C2GnT2-sh2/HT-29 cells, compared with control cells. EPEC or EHEC O157:H7 invasion into HT-29 and its derived cells was based on the intracellular presence of GFP-labeled bacteria. The differentiation of HT-29 cells led to a reduction in EPEC internalization compared with HT-29 cells (p < 0.01). EPEC or EHEC O157:H7 invasion into HT-29-OBN and HT-29-Gal-OBN cells increased compared with HT-29 and HT-29-Gal cells (p < 0.05 and p < 0.01). Core 2 O-glycan-deficient HT-29 cells underwent a significant increase in EPEC (p < 0.01) or EHEC O157:H7 (p < 0.05) invasion compared with control cells.

          Methods

          Bacterial invasion into cultured cells was determined by a gentamicin protection assay and a GFP-labeled bacteria invasion assay. O-glycans biosynthesis was inhibited by benzyl-α-GalNAc, and core 2 O-glycan-deficient HT-29 cells were induced by C2GnT2 interference.

          Conclusion

          These data indicated that EPEC or EHEC O157:H7 invasion into HT-29 cells was related to their O-glycosylation status. This study provided the first evidence of carbohydrate-dependent EPEC or EHEC O157:H7 invasion into host cells.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Mucin-bacterial interactions in the human oral cavity and digestive tract.

          Mucins are a family of heavily glycosylated proteins that are the major organic components of the mucus layer, the protective layer covering the epithelial cells in many human and animal organs, including the entire gastro-intestinal tract. Microbes that can associate with mucins benefit from this interaction since they can get available nutrients, experience physico-chemical protection and adhere, resulting in increased residence time. Mucin-degrading microorganisms, which often are found in consortia, have not been extensively characterized as mucins are high molecular weight glycoproteins that are hard to study because of their size, complexity and heterogeneity. The purpose of this review is to discuss how advances in mucus and mucin research, and insight in the microbial ecology promoted our understanding of mucin degradation. Recent insight is presented in mucin structure and organization, the microorganisms known to use mucin as growth substrate, with a specific attention on Akkermansia muciniphila, and the molecular basis of microbial mucin degradation owing to availability of genome sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells.

            The ability of enteropathogenic Escherichia coli (EPEC) to form attaching and effacing intestinal lesions is a major characteristic of EPEC pathogenesis. Using TnphoA mutagenesis we have identified a chromosomal gene (eae, for E. coli attaching and effacing) that is necessary for this activity. A DNA probe derived from this gene hybridizes to 100% of E. coli of EPEC serogroups that demonstrate attaching and effacing activity on tissue culture cells as well as other pathogenic E. coli that produce attaching and effacing intestinal lesions, such as RDEC-1 (an EPEC of weanling rabbits) and enterohemorrhagic E. coli. The predicted amino acid sequence derived from the nucleotide sequence of eae shows significant homology to that of the invasin of Yersinia pseudotuberculosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased susceptibility to colitis and colorectal tumors in mice lacking core 3–derived O-glycans

              Altered intestinal O-glycan expression has been observed in patients with ulcerative colitis and colorectal cancer, but the role of this alteration in the etiology of these diseases is unknown. O-glycans in mucin core proteins are the predominant components of the intestinal mucus, which comprises part of the intestinal mucosal barrier. Core 3–derived O-glycans, which are one of the major types of O-glycans, are primarily expressed in the colon. To investigate the biological function of core 3–derived O-glycans, we engineered mice lacking core 3 β1,3-N-acetylglucosaminyltransferase (C3GnT), an enzyme predicted to be important in the synthesis of core 3–derived O-glycans. Disruption of the C3GnT gene eliminated core 3–derived O-glycans. C3GnT-deficient mice displayed a discrete, colon-specific reduction in Muc2 protein and increased permeability of the intestinal barrier. Moreover, these mice were highly susceptible to experimental triggers of colitis and colorectal adenocarcinoma. These data reveal a requirement for core 3–derived O-glycans in resistance to colonic disease.
                Bookmark

                Author and article information

                Contributors
                yejun66xi@sina.com
                panqiong826@163.com
                guzhuyunyan@sina.com
                qyhxwxl@126.com
                pengzhh@yahoo.com.cn
                wenshengchen@hotmail.com
                chenlei1977603@163.com
                +86-23-68754124 , rongquanw@hotmail.com
                Journal
                Gut Pathog
                Gut Pathog
                Gut Pathogens
                BioMed Central (London )
                1757-4749
                15 December 2015
                15 December 2015
                2015
                : 7
                : 31
                Affiliations
                Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People’s Republic of China
                Article
                78
                10.1186/s13099-015-0078-9
                4681020
                f8398f98-9ced-4295-9207-a50c0227935d
                © Ye et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 September 2015
                : 24 November 2015
                Funding
                Funded by: Natural Sciences of the People’s Republic of China
                Award ID: 81170340
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Gastroenterology & Hepatology
                mucin,o-glycan,invasion,enteropathogenic e. coli,enterohemorrhagic e. coli o157:h7

                Comments

                Comment on this article