11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Is Bactra bactrana (Kennel, 1901) a novel pest of sweet peppers?

      , ,  
      Bulletin of Entomological Research
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This is the first report of Bactra bactrana (Kennel, 1901) (Lepidoptera: Tortricidae) attacking a major solanaceous crop, sweet pepper Capsicum annuum L. The infestation was detected in two greenhouses at the area of Tympaki (Southern Crete, Greece). The moth larvae caused typical symptoms of a fruit borer with numerous small holes on the surface of the peppers and extensive damage on the inside of the fruit as a result of the feeding activity. Unknown factors facilitated this major shift in host range since B. bactrana is typically a stem borer of sedges. In addition, the pest status of B. bactrana is currently under question, as in both cases the infestations by the moth were associated with significant yield losses. B. bactrana was moderately controlled with chemicals registered for Lepidoptera management in sweet pepper due to the boring nature of the infestation. Some comparative taxonomic notes are provided to facilitate accurate pest discrimination of related Bactra species. Finally, biological attributes of the species are summarized and are discussed from pest control and ecological perspectives. Because Bactra species have been used in augmentative releases for the control of sage, the implications of our findings on the release of biocontrol agents are placed in perspective.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Biological control and sustainable food production.

          The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentative control has been successfully applied against a range of open-field and greenhouse pests, and conservation biological control schemes have been developed with indigenous predators and parasitoids. The cost-benefit ratio for classical biological control is highly favourable (1:250) and for augmentative control is similar to that of insecticides (1:2-1:5), with much lower development costs. Over the past 120 years, more than 5000 introductions of approximately 2000 non-native control agents have been made against arthropod pests in 196 countries or islands with remarkably few environmental problems. Biological control is a key component of a 'systems approach' to integrated pest management, to counteract insecticide-resistant pests, withdrawal of chemicals and minimize the usage of pesticides. Current studies indicate that genetically modified insect-resistant Bt crops may have no adverse effects on the activity or function of predators or parasitoids used in biological control. The introduction of rational approaches for the environmental risk assessment of non-native control agents is an essential step in the wider application of biological control, but future success is strongly dependent on a greater level of investment in research and development by governments and related organizations that are committed to a reduced reliance on chemical control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion.

            1. Range expansions mediated by recent climate warming have been documented for many insect species, including some important forest pests. However, whether climate change also influences the eruptive dynamics of forest pest insects, and hence the ecological and economical consequences of outbreaks, is largely unresolved. 2. Using historical outbreak records covering more than a century, we document recent outbreak range expansions of two species of cyclic geometrid moth, Operophtera brumata Bkh. (winter moth) and Epirrita autumnata L. (autumnal moth), in subarctic birch forest of northern Fennoscandia. The two species differ with respect to cold tolerance, and show strikingly different patterns in their recent outbreak range expansion. 3. We show that, during the past 15-20 years, the less cold-tolerant species O. brumata has experienced a pronounced north-eastern expansion into areas previously dominated by E. autumnata outbreaks. Epirrita autumnata, on the other hand, has expanded the region in which it exhibits regular outbreaks into the coldest, most continental areas. Our findings support the suggestion that recent climate warming in the region is the most parsimonious explanation for the observed patterns. 4. The presence of O. brumata outbreaks in regions previously affected solely by E. autumnata outbreaks is likely to increase the effective duration of local outbreaks, and hence have profound implications for the subarctic birch forest ecosystem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing risks of releasing exotic biological control agents of arthropod pests.

              More than 5000 introductions of about 2000 species of exotic arthropod agents for control of arthropod pests in 196 countries or islands during the past 120 years rarely have resulted in negative environmental effects. Yet, risks of environmental effects caused by releases of exotics are of growing concern. Twenty countries have implemented regulations for release of biological control agents. Soon, the International Standard for Phytosanitary Measures (ISPM3) will become the standard for all biological control introductions worldwide, but this standard does not provide methods by which to assess environmental risks. This review summarizes documented nontarget effects and discusses the development and application of comprehensive and quick-scan environmental risk assessment methods.
                Bookmark

                Author and article information

                Journal
                Bulletin of Entomological Research
                Bull. Entomol. Res.
                Cambridge University Press (CUP)
                0007-4853
                1475-2670
                April 2016
                December 23 2015
                April 2016
                : 106
                : 2
                : 161-167
                Article
                10.1017/S0007485315000917
                f8513f31-3f70-46dc-bd10-6ac55d210932
                © 2016

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article